Browsing by Author "Goldberg, Ronald N"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Cytokine profiles of preterm neonates with fungal and bacterial sepsis.(Pediatr Res, 2012-08) Sood, Beena G; Shankaran, Seetha; Schelonka, Robert L; Saha, Shampa; Benjamin, Danny K; Sánchez, Pablo J; Adams-Chapman, Ira; Stoll, Barbara J; Thorsen, Poul; Skogstrand, Kristin; Ehrenkranz, Richard A; Hougaard, David M; Goldberg, Ronald N; Tyson, Jon E; Das, Abhik; Higgins, Rosemary D; Carlo, Waldemar A; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research NetworkBACKGROUND: Information on cytokine profiles in fungal sepsis (FS), an important cause of mortality in extremely low birthweight (ELBW) infants, is lacking. We hypothesized that cytokine profiles in the first 21 d of life in ELBW infants with FS differ from those with bacterial sepsis (BS) or no sepsis (NS). METHODS: In a secondary analysis of the National Institute of Child Health and Human Development Cytokine study, three groups were defined-FS (≥1 episode of FS), BS (≥1 episode of BS without FS), and NS. Association between 11 cytokines assayed in dried blood spots obtained on days 0-1, 3 ± 1, 7 ± 2, 14 ± 3, and 21 ± 3 and sepsis group was explored. RESULTS: Of 1,066 infants, 89 had FS and 368 had BS. As compared with BS, FS was more likely to be associated with lower birthweight, vaginal delivery, patent ductus arteriosus, postnatal steroids, multiple central lines, longer respiratory support and hospital stay, and higher mortality (P < 0.05). Analyses controlling for covariates showed significant group differences over time for interferon-γ (IFN-γ), interleukin (IL)-10, IL-18, transforming growth factor-β (TGF-β), and tumor necrosis factor-α (TNF-α) (P < 0.05). CONCLUSION: Significant differences in profiles for IFN-γ, IL-10, IL-18, TGF-β, and TNF-α in FS, BS, or NS in this hypothesis-generating secondary study require validation in rigorously designed prospective studies and may have implications for diagnosis and treatment.Item Open Access Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy.(The Journal of pediatrics, 2014-05) Cotten, C Michael; Murtha, Amy P; Goldberg, Ronald N; Grotegut, Chad A; Smith, P Brian; Goldstein, Ricki F; Fisher, Kimberley A; Gustafson, Kathryn E; Waters-Pick, Barbara; Swamy, Geeta K; Rattray, Benjamin; Tan, Siddhartha; Kurtzberg, JoanneObjective
To assess feasibility and safety of providing autologous umbilical cord blood (UCB) cells to neonates with hypoxic-ischemic encephalopathy (HIE).Study design
We enrolled infants in the intensive care nursery who were cooled for HIE and had available UCB in an open-label study of non-cyropreserved autologous volume- and red blood cell-reduced UCB cells (up to 4 doses adjusted for volume and red blood cell content, 1-5 × 10(7) cells/dose). We recorded UCB collection and cell infusion characteristics, and pre- and post-infusion vital signs. As exploratory analyses, we compared cell recipients' hospital outcomes (mortality, oral feeds at discharge) and 1-year survival with Bayley Scales of Infant and Toddler Development, 3rd edition scores ≥85 in 3 domains (cognitive, language, and motor development) with cooled infants who did not have available cells.Results
Twenty-three infants were cooled and received cells. Median collection and infusion volumes were 36 and 4.3 mL. Vital signs including oxygen saturation were similar before and after infusions in the first 48 postnatal hours. Cell recipients and concurrent cooled infants had similar hospital outcomes. Thirteen of 18 (74%) cell recipients and 19 of 46 (41%) concurrent cooled infants with known 1-year outcomes survived with scores >85.Conclusions
Collection, preparation, and infusion of fresh autologous UCB cells for use in infants with HIE is feasible. A randomized double-blind study is needed.Item Open Access Human Umbilical Cord Blood Cells Ameliorate Motor Deficits in Rabbits in a Cerebral Palsy Model.(Developmental neuroscience, 2015-01) Drobyshevsky, Alexander; Cotten, C Michael; Shi, Zhongjie; Luo, Kehuan; Jiang, Rugang; Derrick, Matthew; Tracy, Elizabeth T; Gentry, Tracy; Goldberg, Ronald N; Kurtzberg, Joanne; Tan, SidharthaCerebral palsy (CP) has a significant impact on both patients and society, but therapy is limited. Human umbilical cord blood cells (HUCBC), containing various stem and progenitor cells, have been used to treat various brain genetic conditions. In small animal experiments, HUCBC have improved outcomes after hypoxic-ischemic (HI) injury. Clinical trials using HUCBC are underway, testing feasibility, safety and efficacy for neonatal injury as well as CP. We tested HUCBC therapy in a validated rabbit model of CP after acute changes secondary to HI injury had subsided. Following uterine ischemia at 70% gestation, we infused HUCBC into newborn rabbit kits with either mild or severe neurobehavioral changes. Infusion of high-dose HUCBC (5 × 10(6) cells) dramatically altered the natural history of the injury, alleviating the abnormal phenotype including posture, righting reflex, locomotion, tone, and dystonia. Half the high dose showed lesser but still significant improvement. The swimming test, however, showed that joint function did not restore to naïve control function in either group. Tracing HUCBC with either MRI biomarkers or PCR for human DNA found little penetration of HUCBC in the newborn brain in the immediate newborn period, suggesting that the beneficial effects were not due to cellular integration or direct proliferative effects but rather to paracrine signaling. This is the first study to show that HUCBC improve motor performance in a dose-dependent manner, perhaps by improving compensatory repair processes.