Browsing by Author "Gospe, Sidney M"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Child Neurology Applicants Place Increasing Emphasis on Quality of Life Factors.(Pediatric neurology, 2020-09-30) Dixon, Sarah M; Binkley, Michael M; Gospe, Sidney M; Guerriero, Réjean MBACKGROUND:Medical education, residency training, and the structure of child neurology residency training programs are evolving. We sought to evaluate how training program selection priorities of child neurology residency applicants have changed over time. METHODS:An electronic survey was sent to child neurology residents and practicing child neurologists via the Professors of Child Neurology distribution list in the summer of 2018. It was requested that the survey be disseminated to current trainees and alumni of the programs. The survey consisted of seven questions assessing basic demographics and a list of factors applicants consider when choosing a residency. RESULTS:There were 284 responses with a higher representation of individuals matriculating into residency in the last decade. More recent medical school graduates had a lower probability of considering curriculum as an important factor for residency selection (odds ratio [OR], 0.746; 95% confidence interval [95% CI], 0.568 to 0.98; P = 0.035) and higher priority placed on interaction with current residents over the course of the interview day (OR, 2.207; 95% CI, 1.486 to 3.278; P < 0.0001), sense of resident happiness and well-being (OR, 2.176; 95% CI, 1.494 to 3.169; P < 0.0001), and perception of city or geography of the residency program (OR, 1.710; 95% CI, 1.272 to 2.298; P < 0.001). CONCLUSIONS:Over time, child neurology residency applicants are putting more emphasis on quality of life factors over curriculum. To accommodate these changes, child neurology residency programs should prioritize interactions with residents during the interview process and resident wellness initiatives throughout residency training.Item Open Access Facilitative glucose transporter Glut1 is actively excluded from rod outer segments.(J Cell Sci, 2010-11-01) Gospe, Sidney M; Baker, Sheila A; Arshavsky, Vadim YPhotoreceptors are among the most metabolically active cells in the body, relying on both oxidative phosphorylation and glycolysis to satisfy their high energy needs. Local glycolysis is thought to be particularly crucial in supporting the function of the photoreceptor's light-sensitive outer segment compartment, which is devoid of mitochondria. Accordingly, it has been commonly accepted that the facilitative glucose transporter Glut1 responsible for glucose entry into photoreceptors is localized in part to the outer segment plasma membrane. However, we now demonstrate that Glut1 is entirely absent from the rod outer segment and is actively excluded from this compartment by targeting information present in its cytosolic C-terminal tail. Our data indicate that glucose metabolized in the outer segment must first enter through other parts of the photoreceptor cell. Consequently, the entire energy supply of the outer segment is dependent on diffusion of energy-rich substrates through the thin connecting cilium that links this compartment to the rest of the cell.Item Open Access Photoreceptors in a Mouse Model of Leigh Syndrome are Capable of Normal Light-Evoked Signaling.(The Journal of biological chemistry, 2019-06-27) Gospe, Sidney M; Travis, Amanda M; Kolesnikov, Alexander V; Klingeborn, Mikael; Wang, Luyu; Kefalov, Vladimir J; Arshavsky, Vadim YMitochondrial dysfunction is an important cause of heritable vision loss. Mutations affecting mitochondrial bioenergetics may lead to isolated vision loss or life-threatening systemic disease, depending on a mutation's severity. Primary optic nerve atrophy resulting from death of retinal ganglion cells is the most prominent ocular manifestation of mitochondrial disease. However, dysfunction of other retinal cell types has also been described, sometimes leading to a loss of photoreceptors and retinal pigment epithelium that manifests clinically as pigmentary retinopathy. A popular mouse model of mitochondrial disease that lacks NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4), a subunit of mitochondrial complex I, phenocopies many traits of the human disease Leigh syndrome, including the development of optic atrophy. It has also been reported that ndufs4-/- mice display diminished light responses at the level of photoreceptors or bipolar cells. By conducting electroretinography (ERG) recordings in live ndufs4-/- mice, we now demonstrate that this defect occurs at the level of retinal photoreceptors. We found that this deficit does not arise from retinal developmental anomalies, photoreceptor degeneration, or impaired regeneration of visual pigment. Strikingly, the impairment of ndufs4-/- photoreceptor function was not observed in ex vivo ERG recordings from isolated retinas, indicating that photoreceptors with complex I deficiency are intrinsically capable of normal signaling. The difference in electrophysiological phenotypes in vivo and ex vivo suggests that the energy deprivation associated with severe mitochondrial impairment in the outer retina renders ndufs4-/- photoreceptors unable to maintain the homeostatic conditions required to operate at their normal capacity.Item Open Access Pyridoxine‐dependent epilepsy: Current perspectives and questions for future research(Annals of the Child Neurology Society) Coughlin, Curtis R; Gospe, Sidney MItem Open Access Quantitative topographic curvature maps of the posterior eye utilizing optical coherence tomography.(Retina (Philadelphia, Pa.), 2020-06-17) McNabb, Ryan P; Liu, Alice S; Gospe, Sidney M; El-Dairi, Mays; Meekins, Landon C; James, Charlene; Vann, Robin R; Izatt, Joseph A; Kuo, Anthony NPURPOSE:Deformations of the retina such as staphylomas in myopia or scleral flattening in high intracranial pressure can be challenging to quantify with en face imaging. We describe an OCT based method for the generation of quantitative posterior eye topography maps in normal and pathologic eyes. METHODS:Utilizing "whole eye" OCT we corrected for subjects' optical distortions to generate spatially accurate posterior eye OCT volumes and created local curvature (KM, mm) topography maps for each consented subject. We imaged nine subjects, three normal, two with myopic degeneration (MD), and four with papilledema including one that was imaged longitudinally. RESULTS:Normal subjects mean temporal KM was 0.0923 mm, nasal KM was 0.0927 mm, and KM local variability was 0.0162 mm. In MD subjects KM local variability was higher at 0.0836 mm. In papilledema subjects nasal KM was flatter compared to temporal KM (0.0709 mm vs. 0.0885 mm). Mean intrasession KM repeatability for all subjects was 0.0036 mm. CONCLUSION:We have developed an OCT based method for quantitative posterior eye topography that offers the ability to analyze local curvature with micron scale resolution and offers the potential to help clinicians and researchers characterize subtle, local retinal deformations earlier in patients and follow their development over time.Item Open Access Withholding Childhood Immunizations: A Parent's Right or a Child's Neglect?(Pediatric neurology, 2020-12) Weisleder, Pedro; Gospe, Sidney M