Browsing by Author "Guan, Yue"
- Results Per Page
- Sort Options
Item Open Access Challenges and strategies for implementing genomic services in diverse settings: experiences from the Implementing GeNomics In pracTicE (IGNITE) network.(BMC Med Genomics, 2017-05-22) Sperber, Nina R; Carpenter, Janet S; Cavallari, Larisa H; J Damschroder, Laura; Cooper-DeHoff, Rhonda M; Denny, Joshua C; Ginsburg, Geoffrey S; Guan, Yue; Horowitz, Carol R; Levy, Kenneth D; Levy, Mia A; Madden, Ebony B; Matheny, Michael E; Pollin, Toni I; Pratt, Victoria M; Rosenman, Marc; Voils, Corrine I; W Weitzel, Kristen; Wilke, Russell A; Ryanne Wu, R; Orlando, Lori ABACKGROUND: To realize potential public health benefits from genetic and genomic innovations, understanding how best to implement the innovations into clinical care is important. The objective of this study was to synthesize data on challenges identified by six diverse projects that are part of a National Human Genome Research Institute (NHGRI)-funded network focused on implementing genomics into practice and strategies to overcome these challenges. METHODS: We used a multiple-case study approach with each project considered as a case and qualitative methods to elicit and describe themes related to implementation challenges and strategies. We describe challenges and strategies in an implementation framework and typology to enable consistent definitions and cross-case comparisons. Strategies were linked to challenges based on expert review and shared themes. RESULTS: Three challenges were identified by all six projects, and strategies to address these challenges varied across the projects. One common challenge was to increase the relative priority of integrating genomics within the health system electronic health record (EHR). Four projects used data warehousing techniques to accomplish the integration. The second common challenge was to strengthen clinicians' knowledge and beliefs about genomic medicine. To overcome this challenge, all projects developed educational materials and conducted meetings and outreach focused on genomic education for clinicians. The third challenge was engaging patients in the genomic medicine projects. Strategies to overcome this challenge included use of mass media to spread the word, actively involving patients in implementation (e.g., a patient advisory board), and preparing patients to be active participants in their healthcare decisions. CONCLUSIONS: This is the first collaborative evaluation focusing on the description of genomic medicine innovations implemented in multiple real-world clinical settings. Findings suggest that strategies to facilitate integration of genomic data within existing EHRs and educate stakeholders about the value of genomic services are considered important for effective implementation. Future work could build on these findings to evaluate which strategies are optimal under what conditions. This information will be useful for guiding translation of discoveries to clinical care, which, in turn, can provide data to inform continual improvement of genomic innovations and their applications.Item Open Access Nonlinear Behavior of Systems with Multiple Equilibria(2019) Guan, YueThis study describes the nonlinear behavior of a number of various systems with multiple equilibria, from discrete mechanical systems to high-dimensional continuous structures. All these systems are capable of exhibiting sophisticated potential landscapes, including multiple equilibria with different stability properties, whereas their nonlinearities are somewhat sensitive to the geometric conditions. Similar behavior and equivalent relationships are developed for various systems.
First, numerical and experimental investigations are presented for systems with three mechanical/structural degrees-of-freedom (DOF). Considering moderate complexity between low-order and relatively high-order systems, the three-DOF system is able to exhibit a visible configuration space. Useful insights are provided by observations of the iso-potentials and experimental transient trajectories meandering within them. Hyperboloidal passable tubes are found around index-1 saddles on the iso-potential shapes, enabling possible transitions between stable equilibria. As a result, transient trajectories have a tendency to slow down, temporarily oscillate, and separate from each other in the vicinity of these saddles. These phenomena have been verified by experiments, which imply possible existence of an unstable equilibrium in dynamics. Bifurcation structures and morphing potential landscapes are revealed by varying key geometric parameters of the system. Parametric excitation shows a possibility to stabilize unstable equilibria in dynamics under the right amplitudes and frequencies - this is exposed both theoretically and experimentally. A practical four-member pyramidal lattice frame is used as an example of a complex system, adequately modeled by three-DOF. Though significantly different from the mass-spring system, the pyramidal frame presents similar universal features and behavior as the discrete system, with its three dominant modes.
Static nonlinear behavior of higher-order structures is then investigated. For geodesic lattice domes with rigid joints, the complete load-displacement relationship and multiple equilibrium configurations are exhibited both in experiment and in simulation. Multiple snaps are observed, when the system discontinuously pops from one stable equilibrium configuration to another. Symmetry breaks as a result of the equilibrium path bifurcation. Experimental result shows the sensitivity of the structure due to minor perturbations. Geometric parameters have a qualitative influence on the system’s nonlinearity. Furthermore, for a shallow arch structure, the geometric conditions to maintain a stable snapped-though equilibrium position (in addition to the nominally unloaded configuration) are studied. Critical stability boundaries are generated in the parameter space. When the boundary is crossed, the stable inverted equilibrium disappears, and as a result, the structure will snap back to its initial configuration spontaneously. A set of 3D-printed arches on both sides of the critical boundary are produced for verification purposes. The results have also been extended to thermal conditions. Finally, as a real high-dimensional system, the buckling and post-buckling behavior of a cylindrical shell is taken into consideration. Various initial imperfections are tested. While the structure is sensitive to some initial imperfection shapes (e.g., a post-buckled deformation, a dimple imperfection, etc.), some other initial imperfection shapes (e.g., an axisymmetric half ‘sine’ wave) hardly have any influence on the buckling behavior. Therefore, the sensitivity of the system can be reduced by applying prescribed initial imperfections in certain `sensitive’ shapes. Lateral probing tests under varying axial loads exhibit a view of the underlying potential landscape and implies an upper limit of the critical buckling force.
In contrast to previous studies on known systems, in the last part, a quadratic regression method is developed to locate unstable equilibria for an unknown system from its transient responses. The method shows great accuracy and efficiency for various systems with two or three mechanical/structural DOFs, especially in locating the `most important’ index-1 saddle point. It is also beneficial in identifying systems with adjacent equilibria or saddle point ghosts. The method also shows a robustness against noise, if a proper zero-phase filter is applied.