Browsing by Author "Guilak, Farshid"
Results Per Page
Sort Options
Item Open Access Altered trabecular bone structure and delayed cartilage degeneration in the knees of collagen VI null mice.(PLoS One, 2012) Christensen, Susan E; Coles, Jeffrey M; Zelenski, Nicole A; Furman, Bridgette D; Leddy, Holly A; Zauscher, Stefan; Bonaldo, Paolo; Guilak, FarshidMutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1(-/-) mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1(-/-) mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1(+/+) mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1(+/+) mice, but not in Col6a1(-/-) mice. Col6a1(-/-) mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1(+/+) mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1(-/-) mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data.Item Open Access Bioinformatics and Molecular Approaches for the Construction of Biological Artificial Cartilage(2018) Huynh, Nguyen Phuong ThaoOsteoarthritis (OA) is one of the leading causes of disability in the United States, afflicting over 27 million Americans and imposing an economic burden of more than $128 billion each year (1, 2). OA is characterized by progressive degeneration of articular cartilage together with sub-chondral bone remodeling and synovial joint inflammation. Currently, OA treatments are limited, and inadequate to restore the joint to its full functionality.
Over the years, progresses have been made to create biologic cartilage substitutes. However, the repair of degenerated cartilage remains challenging due to its complex architecture and limited capability to integrate with surrounding tissues. Hence, there exists a need to create not only functional chondral constructs, but functional osteochondral constructs, which could potentially enhance affixing properties of cartilage implants utilizing the underlying bone. Furthermore, the molecular mechanisms driving chondrogenesis are still not fully understood. Therefore, detailed transcriptomic profiling would bring forth the progression of not only genes, but gene entities and networks that orchestrate this process.
Bone-marrow derived mesenchymal stem cells (MSCs) are routinely utilized to create cartilage constructs in vitro for the study of chondrogenesis. In this work, we set out to examine the underlying mechanisms of these cells, as well as the intricate gene correlation networks over the time course of lineage development. We first asked the question of how transforming growth factors are determining MSC differentiation, and subsequently utilized genetic engineering to manipulate this pathway to create an osteochondral construct. Next, we performed high-throughput next-generation sequencing to profile the dynamics of MSC transcriptomes over the time course of chondrogenesis. Bioinformatics analyses of these big data have yielded a multitude of information: the chondrogenic functional module, the associated gene ontologies, and finally the elucidation of GRASLND and its crucial function in chondrogenesis. We extended our results with a detailed molecular characterization of GRASLND and its underlying mechanisms. We showed that GRASLND could enhance chondrogenesis, and thus proposed its therapeutic use in cartilage tissue engineering as well as in the treatment of OA.
Item Open Access Biomimetic Composite Scaffolds for the Functional Tissue Engineering of Articular Cartilage(2009) Moutos, Franklin ThomasArticular cartilage is the connective tissue that lines the ends of long bones in diarthrodial joints, providing a low-friction load-bearing surface that can withstand a lifetime of loading cycles under normal conditions. Despite these unique and advantageous properties, the tissue possesses a limited capacity for self-repair due to its lack of vasculature and innervation. Total joint replacement is a well-established treatment for degenerative joint disease; however, the materials used in these procedures have a limited lifespan in vivo and will likely fail over time, requiring additional - and increasingly complicated - revision surgeries. For younger or more active patients, this risk is unacceptable. Unfortunately, alternative surgical options are not currently available, leaving pain management as the only viable treatment. In seeking to discover a new therapeutic strategy, the goal of this dissertation was to develop a functional tissue-engineered cartilage construct that may be used to resurface an entire diseased or damaged joint.
A three-dimensional (3-D) woven textile structure, produced on a custom-built miniature weaving loom, was utilized as the basis for producing novel composite scaffolds and cartilage tissue constructs that exhibited initial properties similar to those of native articular cartilage. Using polyglycolic acid (PGA) fibers combined with chondrocyte-loaded agarose or fibrin hydrogels, scaffolds were engineered with anisotropic, inhomogeneous, viscoelastic, and nonlinear characteristics prior to cultivation. However, PGA-based constructs showed a rapid loss of mechanical functionality over a 28 day culture period suggesting that the inclusion of other, less degradable, biomaterial fibers could provide more stable properties.
Retaining the original 3-D architecture and fiber/hydrogel composite construction, poly (epsilon-caprolactone) (PCL)-based scaffolds demonstrated initial biomechanical properties similar to those of PGA-based scaffolds. Long-term culture of 3-D PCL/fibrin scaffolds seeded with human adipose-derived stem cells (ASCs) showed that scaffolds maintained their baseline properties as new, collagen-rich tissue accumulated within the constructs.
In an attempt to improve the bioactivity of the PCL scaffold and further induce chondrogenic differentiation of seeded ASCs, we produced a hybrid scaffold system by embedding the 3-D woven structure within a porous matrix derived from native cartilage. We then demonstrated how this multifunctional scaffold could be molded, seeded, and cultured in order to produce an anatomically accurate tissue construct with potential for resurfacing the femoral head of a hip.
In summary, these findings provide valuable insight into a new approach for the functional tissue engineering of articular cartilage. The results of this work will hopefully lead to the discovery of new strategies for the long-term treatment of cartilage pathology.
Item Open Access Cellular and Biomaterial Engineering for Orthopaedic Regenerative Medicine(2015) Brunger, Jonathan M.The ends of long bones that articulate with respect to one another are lined with a crucial connective tissue called articular cartilage. This tissue plays an essential biomechanical function in synovial joints, as it serves to both dissipate load and lubricate articulating surfaces. Osteoarthritis is a painful and debilitating disease that drives the deterioration of articular cartilage. Like many chronic diseases, pro-inflammatory cytokines feature prominently in the onset and progression of osteoarthritis. Because cartilage lacks physiologic features critical for regeneration and self-repair, the development of effective strategies to create functional cartilage tissue substitutes remains a priority for the fields of tissue engineering and regenerative medicine. The overall objectives of this dissertation are to (1) develop a bioactive scaffold capable of mediating cell differentiation and formation of extracellular matrix that recapitulates native cartilage tissue and (2) to produce stem cells specifically tailored at the scale of the genome with the ability to resist inflammatory cues that normally lead to degeneration and pain.
Engineered replacements for musculoskeletal tissues generally require extensive ex vivo manipulation of stem cells to achieve controlled differentiation and phenotypic stability. By immobilizing lentivirus driving the expression of transforming growth factor-β3 to a highly structured, three dimensionally woven tissue engineering scaffold, we developed a technique for producing cell-instructive scaffolds that control human mesenchymal stem cell differentiation and possess biomechanical properties approximating those of native tissues. This work represents an important advance, as it establishes a method for generating constructs capable of restoring biological and mechanical function that may circumvent the need for ex vivo conditioning of engineered tissue substitutes.
Any functional cartilage tissue substitute must tolerate the inflammation intrinsic to an arthritic joint. Recently emerging tools from synthetic biology and genome engineering facilitate an unprecedented ability to modify how cells respond to their microenvironments. We exploited these developments to engineer cells that can evade signaling of the pro-inflammatory cytokine interleukin-1 (IL-1). Our study provides proof-of-principle evidence that cartilage derived from such engineered stem cells are resistant to IL-1-mediated degradation.
Extending on this work, we developed a synthetic biology strategy to further customize stem cells to combat inflammatory cues. We commandeered the highly responsive endogenous locus of the chemokine (C-C motif) ligand 2 gene in pluripotent stem cells to impart self-regulated, feedback-controlled production of biologic therapy. We demonstrated that repurposing of degradative signaling pathways induced by IL-1 and tumor necrosis factor toward transient production of cytokine antagonists enabled engineered cartilage tissue to withstand the action of inflammatory cytokines and to serve as a cell-based, auto-regulated drug delivery system.
In this work, we combine principles from synthetic biology, gene therapy, and functional tissue engineering to develop methods for generating constructs with biomimetic molecular and mechanical features of articular cartilage while precisely defining how cells respond to dysfunction in the body’s finely-tuned inflammatory systems. Moreover, our strategy for customizing intrinsic cellular signaling pathways in therapeutic stem cell populations opens innovative possibilities for controlled drug delivery to native tissues, which may provide safer and more effective treatments applicable to a wide variety of chronic diseases and may transform the landscape of regenerative medicine.
Item Open Access Chondrogenesis and mineralization during in vitro culture of human mesenchymal stem cells on three-dimensional woven scaffolds.(Tissue Eng Part A, 2010-12) Abrahamsson, Christoffer K; Yang, Fan; Park, Hyoungshin; Brunger, Jonathan M; Valonen, Piia K; Langer, Robert; Welter, Jean F; Caplan, Arnold I; Guilak, Farshid; Freed, Lisa EHuman mesenchymal stem cells (hMSCs) and three-dimensional (3D) woven poly(ɛ-caprolactone) (PCL) scaffolds are promising tools for skeletal tissue engineering. We hypothesized that in vitro culture duration and medium additives can individually and interactively influence the structure, composition, mechanical, and molecular properties of engineered tissues based on hMSCs and 3D poly(ɛ-caprolactone). Bone marrow hMSCs were suspended in collagen gel, seeded on scaffolds, and cultured for 1, 21, or 45 days under chondrogenic and/or osteogenic conditions. Structure, composition, biomechanics, and gene expression were analyzed. In chondrogenic medium, cartilaginous tissue formed by day 21, and hypertrophic mineralization was observed in the newly formed extracellular matrix at the interface with underlying scaffold by day 45. Glycosaminoglycan, hydroxyproline, and calcium contents, and alkaline phosphatase activity depended on culture duration and medium additives, with significant interactive effects (all p < 0.0001). The 45-day constructs exhibited mechanical properties on the order of magnitude of native articular cartilage (aggregate, Young's, and shear moduli of 0.15, 0.12, and 0.033 MPa, respectively). Gene expression was characteristic of chondrogenesis and endochondral bone formation, with sequential regulation of Sox-9, collagen type II, aggrecan, core binding factor alpha 1 (Cbfα1)/Runx2, bone sialoprotein, bone morphogenetic protein-2, and osteocalcin. In contrast, osteogenic medium produced limited osteogenesis. Long-term culture of hMSC on 3D scaffolds resulted in chondrogenesis and regional mineralization at the interface between soft, newly formed engineered cartilage, and stiffer underlying scaffold. These findings merit consideration when developing grafts for osteochondral defect repair.Item Open Access Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix.(Tissue Eng Part A, 2010-02) Diekman, Brian O; Rowland, Christopher R; Lennon, Donald P; Caplan, Arnold I; Guilak, FarshidOBJECTIVES: Adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (MSCs) are multipotent adult stem cells with potential for use in cartilage tissue engineering. We hypothesized that these cells show distinct responses to different chondrogenic culture conditions and extracellular matrices, illustrating important differences between cell types. METHODS: Human ASCs and MSCs were chondrogenically differentiated in alginate beads or a novel scaffold of reconstituted native cartilage-derived matrix with a range of growth factors, including dexamethasone, transforming growth factor beta3, and bone morphogenetic protein 6. Constructs were analyzed for gene expression and matrix synthesis. RESULTS: Chondrogenic growth factors induced a chondrocytic phenotype in both ASCs and MSCs in alginate beads or cartilage-derived matrix. MSCs demonstrated enhanced type II collagen gene expression and matrix synthesis as well as a greater propensity for the hypertrophic chondrocyte phenotype. ASCs had higher upregulation of aggrecan gene expression in response to bone morphogenetic protein 6 (857-fold), while MSCs responded more favorably to transforming growth factor beta3 (573-fold increase). CONCLUSIONS: ASCs and MSCs are distinct cell types as illustrated by their unique responses to growth factor-based chondrogenic induction. This chondrogenic induction is affected by the composition of the scaffold and the presence of serum.Item Open Access Combined Gene Therapy and Functional Tissue Engineering for the Treatment of Osteoarthritis(2016) Glass, Katherine AnneThe pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (hMSC) chondrogenesis. We combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in hMSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce hMSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis.
Following this, we modified this anti-inflammatory engineered cartilage to incorporate rabbit MSCs and evaluated this therapeutic strategy in a pilot study in vivo in rabbit osteochondral defects. Rabbits were fed a custom doxycycline diet to induce gene expression in engineered cartilage implanted in the joint. Serum and synovial fluid were collected and the levels of doxycycline and inflammatory mediators were measured. Rabbits were euthanized 3 weeks following surgery and tissues were harvested for analysis. We found that doxycycline levels in serum and synovial fluid were too low to induce strong overexpression of hIL-1Ra in the joint and hIL-1Ra was undetectable in synovial fluid via ELISA. Although hIL-1Ra expression in the first few days local to the site of injury may have had a beneficial effect, overall a higher doxycycline dose and more readily transduced cell population would improve application of this therapy.
In addition to the 3D woven PCL scaffold, cartilage-derived matrix scaffolds have recently emerged as a promising option for cartilage tissue engineering. Spatially-defined, biomaterial-mediated lentiviral gene delivery of tunable and inducible morphogenetic transgenes may enable guided differentiation of hMSCs into both cartilage and bone within CDM scaffolds, enhancing the ability of the CDM scaffold to provide chondrogenic cues to hMSCs. In addition to controlled production of anti-inflammatory proteins within the joint, in situ production of chondro- and osteo-inductive factors within tissue-engineered cartilage, bone, or osteochondral tissue may be highly advantageous as it could eliminate the need for extensive in vitro differentiation involving supplementation of culture media with exogenous growth factors. To this end, we have utilized controlled overexpression of transforming growth factor-beta 3 (TGF-β3), bone morphogenetic protein-2 (BMP-2) or a combination of both factors, to induce chondrogenesis, osteogenesis, or both, within CDM hemispheres. We found that TGF-β3 overexpression led to robust chondrogenesis in vitro and BMP-2 overexpression led to mineralization but not accumulation of type I collagen. We also showed the development of a single osteochondral construct by combining tissues overexpressing BMP-2 (hemisphere insert) and TGF-β3 (hollow hemisphere shell) and culturing them together in the same media. Chondrogenic ECM was localized in the TGF-β3-expressing portion and osteogenic ECM was localized in the BMP-2-expressing region. Tissue also formed in the interface between the two pieces, integrating them into a single construct.
Since CDM scaffolds can be enzymatically degraded just like native cartilage, we hypothesized that IL-1 may have an even larger influence on CDM than PCL tissue-engineered constructs. Additionally, anti-inflammatory engineered cartilage implanted in vivo will likely affect cartilage and the underlying bone. There is some evidence that osteogenesis may be enhanced by IL-1 treatment rather than inhibited. To investigate the effects of an inflammatory environment on osteogenesis and chondrogenesis within CDM hemispheres, we evaluated the ability of IL-1Ra-expressing or control constructs to undergo chondrogenesis and osteogenesis in the prescence of IL-1. We found that IL-1 prevented chondrogenesis in CDM hemispheres but did not did not produce discernable effects on osteogenesis in CDM hemispheres. IL-1Ra-expressing CDM hemispheres produced robust cartilage-like ECM and did not upregulate inflammatory mediators during chondrogenic culture in the presence of IL-1.
Item Open Access CXCL10 is Upregulated in Synovium and Cartilage following Articular Fracture.(J Orthop Res, 2017-09-14) Furman, Bridgette D; Kent, Collin L; Huebner, Janet L; Kraus, Virginia B; McNulty, Amy L; Guilak, Farshid; Olson, Steven AThe objective of this study was to investigate the expression of the chemokine CXCL10 and its role in joint tissues following articular fracture. We hypothesized that CXCL10 is upregulated following articular fracture and contributes to cartilage degradation associated with post-traumatic arthritis (PTA). To evaluate CXCL10 expression following articular fracture, gene expression was quantified in synovial tissue from knee joints of C57BL/6 mice that develop PTA following articular fracture, and MRL/MpJ mice that are protected from PTA. CXCL10 protein expression was assessed in human cartilage in normal, osteoarthritic (OA), and post-traumatic tissue using immunohistochemistry. The effects of exogenous CXCL10, alone and in combination with IL-1, on porcine cartilage explants were assessed by quantifying the release of catabolic mediators. Synovial tissue gene expression of CXCL10 was upregulated by joint trauma, peaking one day in C57BL/6 mice (25-fold) vs. three days post-fracture in MRL/MpJ mice (15-fold). CXCL10 protein in articular cartilage was most highly expressed following trauma compared with normal and OA tissue. In a dose dependent manner, exogenous CXCL10 significantly reduced total matrix metalloproteinase (MMP) and aggrecanase activity of culture media from cartilage explants. CXCL10 also trended toward a reduction in IL-1α-stimulated total MMP activity (p=0.09) and S-GAG (p=0.09), but not NO release. In conclusion, CXCL10 was upregulated in synovium and chondrocytes following trauma. However, exogenous CXCL10 did not induce a catabolic response in cartilage. CXCL10 may play a role in modulating the chondrocyte response to inflammatory stimuli associated with joint injury and the progression of PTA. This article is protected by copyright. All rights reserved.Item Open Access Development of a High-Throughput Human iPSC Chondrogenesis Platform and Applications for Arthritis Disease Modeling(2019) Adkar, ShaunakThe differentiation of human induced pluripotent stem cells (hiPSCs) to prescribed cell fates enables the engineering of patient-specific tissue types, such as hyaline cartilage, for applications in regenerative medicine, disease modeling, and drug screening. In many cases, however, these differentiation approaches are poorly controlled and generate heterogeneous cell populations. In this dissertation, we demonstrate robust cartilaginous matrix production in multiple hiPSC lines using a robust and reproducible differentiation protocol. To purify chondroprogenitors produced by this protocol, we engineered a COL2A1-GFP knock-in reporter hiPSC line by CRISPR-Cas9 genome editing. Purified chondroprogenitors demonstrated an improved chondrogenic capacity compared to unselected populations, improved matrix homogeneity, and reduced variability between tissues. We next demonstrated the ability of the system to serve as a high-throughput system for arthritis disease modeling using cytokine stimuli. Finally, we used this platform to screen for transcription factors whose activation might be involved in chondrogenic lineage specification of hiPSCs. Taken together, these studies describe the generation of a high-throughput system for chondrogenesis and its application for screens and arthritis disease modeling. Future applications of this platform may be useful for identifying pathways regulating cartilage regeneration and novel therapeutics for arthritis.
Item Open Access Development of Cartilage-Derived Matrix Scaffolds via Crosslinking, Decellularization, and Ice-Templating(2015) Rowland, ChristopherArticular cartilage is a connective tissue that lines the surfaces of diarthrodial joints; and functions to support and distribute loads as wells as facilitate smooth joint articulation. Unfortunately, cartilage possesses a limited capacity to self-repair. Once damaged, cartilage continues to degenerate until widespread cartilage loss results in the debilitating and painful disease of osteoarthritis. Current treatment options are limited to palliative interventions that seek to mitigate pain, and fail to recapitulate the native function. Cartilage tissue engineering offers a novel treatment option for the repair of focal defects as well as the complete resurfacing of osteoarthritic joints. Tissue engineering combines cells, growth factors, and biomaterials in order to synthesize new cartilage tissue that recapitulates the native structure, mechanical properties, and function of the native tissue. In this endeavor, there has been a growing interest in the use of scaffolds derived from the native extracellular matrix of cartilage. These cartilage-derived matrix (CDM) scaffolds have been show to recapitulate the native epitopes for cell-matrix interactions as well as provide entrapped growth factors; and have been shown to stimulate chondrogenic differentiation of a variety of cell types. Despite the potent chondroinductive properties of CDM scaffolds, they possess very weak mechanical properties that are several orders of magnitude lower than the native tissue. These poor mechanical properties lead to CDM scaffolds succumbing to cell-mediated contraction, which dramatically and unpredictably alters the size and shape of CDM constructs. Cell-mediated contraction not only prevents the fabrication of CDM constructs with specific, pre-determined dimensions, but also limits cellular proliferation and metabolic synthesis of cartilage proteins. This dissertation utilized collagen crosslinking techniques as well as ice-templating in order to enhance the mechanical properties of CDM scaffolds and prevent cell-mediated contraction. Furthermore, the decellularization of CDM was investigated in order to remove possible sources of immunogenicity. This work found that both physical and chemical crosslinking techniques were capable of preventing cell-mediated contraction in CDM scaffolds; however, the crosslinking techniques produced distinct effects on the chondroinductive capacity of CDM. Furthermore, the mechanical properties of CDM scaffolds were able to be enhanced by increasing the CDM concentration; however, this led to a concomitant decrease in pore size, which limited cellular infiltration. The pore size was able to be rescued through the use of an ice-templating technique that led to the formation of large aligned grooves, which enabled cellular infiltration. Additionally, a decellularization protocol was developed that successfully removed foreign DNA to the same order of magnitude as clinically approved materials, while preserving the native GAG content of the CDM, which has been shown to be critical in preserving the mechanical properties of the CDM. Altogether, this body of work demonstrated that dehydrothermal crosslinking was best suited for maintaining the chondroinductive capacity of the CDM, and given the appropriate scaffold fabrication parameters, such as CDM concentration and ice-templating technique, dehydrothermal treatment was able to confer mechanical properties that prevented cell-mediated contraction. To emphasize this finding, this work culminated in the fabrication of an anatomically-relevant hemispherical scaffold entirely from CDM alone. The CDM hemispheres not only supported chondrogenic differentiation, but also retained the original scaffold dimensions and shape throughout chondrogenic culture. These findings illustrate that CDM is a promising material for the fabrication of tailor-made scaffolds for cartilage tissue engineering.
Item Restricted Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice.(Arthritis Res Ther, 2010) Griffin, Timothy M; Fermor, Beverley; Huebner, Janet L; Kraus, Virginia B; Rodriguiz, Ramona M; Wetsel, William C; Cao, Li; Setton, Lori A; Guilak, FarshidINTRODUCTION: Obesity is a major risk factor for the development of osteoarthritis in both weight-bearing and nonweight-bearing joints. The mechanisms by which obesity influences the structural or symptomatic features of osteoarthritis are not well understood, but may include systemic inflammation associated with increased adiposity. In this study, we examined biomechanical, neurobehavioral, inflammatory, and osteoarthritic changes in C57BL/6J mice fed a high-fat diet. METHODS: Female C57BL/6J mice were fed either a 10% kcal fat or a 45% kcal fat diet from 9 to 54 weeks of age. Longitudinal changes in musculoskeletal function and inflammation were compared with endpoint neurobehavioral and osteoarthritic disease states. Bivariate and multivariate analyses were conducted to determine independent associations with diet, percentage body fat, and knee osteoarthritis severity. We also examined healthy porcine cartilage explants treated with physiologic doses of leptin, alone or in combination with IL-1α and palmitic and oleic fatty acids, to determine the effects of leptin on cartilage extracellular matrix homeostasis. RESULTS: High susceptibility to dietary obesity was associated with increased osteoarthritic changes in the knee and impaired musculoskeletal force generation and motor function compared with controls. A high-fat diet also induced symptomatic characteristics of osteoarthritis, including hyperalgesia and anxiety-like behaviors. Controlling for the effects of diet and percentage body fat with a multivariate model revealed a significant association between knee osteoarthritis severity and serum levels of leptin, adiponectin, and IL-1α. Physiologic doses of leptin, in the presence or absence of IL-1α and fatty acids, did not substantially alter extracellular matrix homeostasis in healthy cartilage explants. CONCLUSIONS: These results indicate that diet-induced obesity increases the risk of symptomatic features of osteoarthritis through changes in musculoskeletal function and pain-related behaviors. Furthermore, the independent association of systemic adipokine levels with knee osteoarthritis severity supports a role for adipose-associated inflammation in the molecular pathogenesis of obesity-induced osteoarthritis. Physiologic levels of leptin do not alter extracellular matrix homeostasis in healthy cartilage, suggesting that leptin may be a secondary mediator of osteoarthritis pathogenesis.Item Open Access Diffusional Properties of Articular Cartilage(2007-03-14T15:43:08Z) Leddy, Holly AnneArticular cartilage is the connective tissue that lines joints and provides a smooth surface for articulation and shock absorption. Osteoarthritis, the progressive degeneration of cartilage, is a painful, debilitating, and widespread disease, affecting 70% of people over 65. Because cartilage is avascular, molecular transport occurs primarily via diffusion. The goal of these studies was to examine whether cartilage matrix structure and composition have a significant effect on diffusive transport. We hypothesized that diffusion is anisotropic in the surface zone of cartilage where collagen structure is aligned and densely packed. A theoretical model and experimental protocol for fluorescence imaging of continuous point photobleaching (FICOPP) were developed to measure diffusional anisotropy. Significant anisotropy was observed in ligament, a highly ordered collagenous tissue. In less ordered articular cartilage, diffusional anisotropy was dependent on site in the tissue and size of the diffusing molecule. These findings suggest that diffusional transport of macromolecules is anisotropic in collagenous tissues, with higher rates of diffusion along primary orientation of collagen fibers. We hypothesized that structural differences in the pericellular matrix of cartilage (PCM) would lead to differences in diffusive properties as compared to the surrounding extracellular matrix (ECM). We modified the scanning microphotolysis (SCAMP) technique to allow measurement of diffusion coefficients within the PCM. Diffusion coefficients in the PCM were lower than in the adjacent ECM in normal cartilage, but with early stage arthritis, the PCM diffusivity was not different from that of the ECM. These data suggest that breakdown of the PCM is an early step in arthritis development. We hypothesized that compression of cartilage would cause site‐specific diffusivity decreases and diffusional anisotropy increases. We utilized SCAMP and FICOPP to measure diffusion coefficients and diffusional anisotropy in cartilage as it was compressed. We found that diffusivity decreased and anisotropy increased with increasing strain in a site‐specific manner. These findings suggest that the high surface zone strains that lead to low diffusivity and high anisotropy will decrease transport between cartilage and synovial fluid in compressed cartilage. We have shown that matrix structure and composition have a significant effect on diffusive transport in cartilage.Item Open Access Electrospun Scaffolds for Cartilage Tissue Engineering: Methods to Affect Anisotropy, Material and Cellular Infiltration(2011) Garrigues, Ned WilliamThe aim of this dissertation was to develop new techniques for producing electrospun scaffolds for use in the tissue engineering of articular cartilage. We developed a novel method of imparting mechanical anisotropy to electrospun scaffolds that allowed the production of a single, cohesive scaffold with varying directions of anisotropy in different layers by employing insulating masks to control the electric field. We improved the quantification of fiber alignment, discovering that surface fibers in isotropic scaffolds show similar amounts of fiber alignment as some types of anisotropic scaffolds, and that cells align themselves in response to this subtle fiber alignment. We improved previous methods to improve cellular infiltration into tissue engineering scaffolds. Finally, we produced a new material with chondrogenic potential consisting of native unpurified cartilage which was electrospun as a composite with a synthetic polymer. This work provided advances in three major areas of tissue engineering: scaffold properties, cell-scaffold interaction, and novel materials.
Item Open Access Functional outcome measures in a surgical model of hip osteoarthritis in dogs.(J Exp Orthop, 2016-12) Little, Dianne; Johnson, Stephen; Hash, Jonathan; Olson, Steven A; Estes, Bradley T; Moutos, Franklin T; Lascelles, B Duncan X; Guilak, FarshidBACKGROUND: The hip is one of the most common sites of osteoarthritis in the body, second only to the knee in prevalence. However, current animal models of hip osteoarthritis have not been assessed using many of the functional outcome measures used in orthopaedics, a characteristic that could increase their utility in the evaluation of therapeutic interventions. The canine hip shares similarities with the human hip, and functional outcome measures are well documented in veterinary medicine, providing a baseline for pre-clinical evaluation of therapeutic strategies for the treatment of hip osteoarthritis. The purpose of this study was to evaluate a surgical model of hip osteoarthritis in a large laboratory animal model and to evaluate functional and end-point outcome measures. METHODS: Seven dogs were subjected to partial surgical debridement of cartilage from one femoral head. Pre- and postoperative pain and functional scores, gait analysis, radiographs, accelerometry, goniometry and limb circumference were evaluated through a 20-week recovery period, followed by histological evaluation of cartilage and synovium. RESULTS: Animals developed histological and radiographic evidence of osteoarthritis, which was correlated with measurable functional impairment. For example, Mankin scores in operated limbs were positively correlated to radiographic scores but negatively correlated to range of motion, limb circumference and 20-week peak vertical force. CONCLUSIONS: This study demonstrates that multiple relevant functional outcome measures can be used successfully in a large laboratory animal model of hip osteoarthritis. These measures could be used to evaluate relative efficacy of therapeutic interventions relevant to human clinical care.Item Open Access Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering.(Tissue Eng Part A, 2010-04) Moutos, Franklin T; Guilak, FarshidArticular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing functional tissue-engineered constructs. Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were encapsulated with a fibrin hydrogel, seeded with human adipose-derived stem cells, and cultured for 28 days in chondrogenic culture conditions. Biomechanical testing showed that PCL-based constructs exhibited baseline compressive and shear properties similar to those of native cartilage and maintained these properties throughout the culture period, while supporting the synthesis of a collagen-rich extracellular matrix. Further, constructs displayed an equilibrium coefficient of friction similar to that of native articular cartilage (mu(eq) approximately 0.1-0.3) over the prescribed culture period. Our findings show that three-dimensionally woven PCL-fibrin composite scaffolds can be produced with cartilage-like mechanical properties, and that these engineered properties can be maintained in culture while seeded stem cells regenerate a new, functional tissue construct.Item Open Access Functional Tissue Engineering of Cartilage Using Adipose-derived Stem Cells(2008-03-31) Estes, Bradley ThomasArticular cartilage is the thin, load-bearing connective tissue that lines the ends of long bones in diarthroidal joints, providing predominantly a mechanical function. Because cartilage is avascular and aneural, it has little capacity for self-repair if damaged. One repair strategy is through a functional tissue engineering approach using adipose-derived stem cells (ASCs). ASCs are an abundant progenitor cell source easily obtained through a minimally invasive liposuction procedure. When appropriately stimulated, ASCs have demonstrated significant potential for chondrogenic differentiation. Though studies have demonstrated the ability of ASCs to synthesize cartilage-specific macromolecules, a more thorough understanding of factors that modulate ASC chondrogenesis is required. Accordingly, the central aim of this dissertation was to study the chondrogenic response of ASCs to biochemical, biomechanical, and biomaterial factors.
We hypothesized that factors, other than TGF-beta and dexamethasone, would improve ASC chondrogenesis. BMP-6 emerged as a potent regulator of ASC chondrogenesis, particularly in early culture, as noted by significant upregulation of cartilage-specific extracellular matrix (ECM) genes and downregulation of cartilage hypertrophy markers.
Hypothesizing that biomechanical factors would accelerate the formation of cartilage-specific macromolecules, we designed and manufactured an instrument to apply dynamic deformational loading to ASC seeded constructs. Dynamic loading significantly inhibited ASC metabolism and downregulated cartilage-specific ECM genes. However, 21 days of dynamic loading induced the production of type II collagen, a principal component of articular cartilage.
We hypothesized that a biomaterial derived from cartilage would serve as a bioactive scaffold and induce chondrogenic differentiation. The novel, ECM-derived scaffold promoted the most robust differentiation of ASCs relative to both biochemical and biomechanical factors, particularly noted by a type II collagen-rich matrix after 28 days of culture. After 42 days of culture, biphasic mechanical testing revealed an aggregate modulus of 150 kPa, approaching that of native cartilage. These data suggest that the ECM-derived scaffold may retain important signaling molecules to drive differentiation or that ASC differentiation is dependent on proper cell anchorage.
In summary, we have shown that biochemical, biomechanical, and biomaterial factors have strong influences on the chondrogenic potential of ASCs. Optimization of these factors will ultimately be required to successfully engineer a functional tissue.
Item Open Access In vivo cartilage strain increases following medial meniscal tear and correlates with synovial fluid matrix metalloproteinase activity(JOURNAL OF BIOMECHANICS, 2015-06-01) Carter, Teralyn E; Taylor, Kevin A; Spritzer, Charles E; Utturkar, Gangadhar M; Taylor, Dean C; Moorman, Claude T; Garrett, William E; Guilak, Farshid; McNulty, Amy L; DeFrate, Louis EItem Open Access Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis.(Proceedings of the National Academy of Sciences of the United States of America, 2021-03) Lee, Whasil; Nims, Robert J; Savadipour, Alireza; Zhang, Qiaojuan; Leddy, Holly A; Liu, Fang; McNulty, Amy L; Chen, Yong; Guilak, Farshid; Liedtke, Wolfgang BOsteoarthritis (OA) is a painful and debilitating condition of synovial joints without any disease-modifying therapies [A. M. Valdes, T. D. Spector, Nat. Rev. Rheumatol. 7, 23-32 (2011)]. We previously identified mechanosensitive PIEZO channels, PIEZO1 and PIEZO2, both expressed in articular cartilage, to function in chondrocyte mechanotransduction in response to injury [W. Lee et al., Proc. Natl. Acad. Sci. U.S.A. 111, E5114-E5122 (2014); W. Lee, F. Guilak, W. Liedtke, Curr. Top. Membr. 79, 263-273 (2017)]. We therefore asked whether interleukin-1-mediated inflammatory signaling, as occurs in OA, influences Piezo gene expression and channel function, thus indicative of maladaptive reprogramming that can be rationally targeted. Primary porcine chondrocyte culture and human osteoarthritic cartilage tissue were studied. We found that interleukin-1α (IL-1α) up-regulated Piezo1 in porcine chondrocytes. Piezo1 expression was significantly increased in human osteoarthritic cartilage. Increased Piezo1 expression in chondrocytes resulted in a feed-forward pathomechanism whereby increased function of Piezo1 induced excess intracellular Ca2+ at baseline and in response to mechanical deformation. Elevated resting state Ca2+ in turn rarefied the F-actin cytoskeleton and amplified mechanically induced deformation microtrauma. As intracellular substrates of this OA-related inflammatory pathomechanism, in porcine articular chondrocytes exposed to IL-1α, we discovered that enhanced Piezo1 expression depended on p38 MAP-kinase and transcription factors HNF4 and ATF2/CREBP1. CREBP1 directly bound to the proximal PIEZO1 gene promoter. Taken together, these signaling and genetic reprogramming events represent a detrimental Ca2+-driven feed-forward mechanism that can be rationally targeted to stem the progression of OA.Item Open Access Initial displacement of the intra-articular surface after articular fracture correlates with PTA in C57BL/6 mice but not "superhealer" MRL/MpJ mice.(Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 2021-09) Vovos, Tyler J; Furman, Bridgette D; Huebner, Janet L; Kimmerling, Kelly A; Utturkar, Gangadhar M; Green, Cynthia L; Kraus, Virginia B; Guilak, Farshid; Olson, Steven APosttraumatic arthritis (PTA) occurs commonly after articular fracture and may arise, in part, from joint surface incongruity after injury. MRL/MpJ (MRL) "super-healer" mice are protected from PTA compared to C57BL/6 (B6) mice following articular fracture. However, the relationship between the initial displacement of the articular surface, biologic response, and susceptibility to PTA after fracture remains unclear. The objective of this study was to assess whether joint incongruity after articular fracture, as measured by in vivo micro-computed tomography (microCT), could predict pathomechanisms of PTA in mice. B6 and MRL mice (n = 12/strain) received a closed articular fracture (fx) of the left tibial plateau. Articular incongruity was quantified as bone surface deviations (BSD) for each in vivo microCT scan obtained from pre-fx to 8 weeks post-fx, followed by histologic assessment of arthritis. Serum concentrations of bone formation (PINP) and bone resorption (CTX-I) biomarkers were quantified longitudinally. Both strains showed increases in surface incongruity over time, as measured by increases in BSD. In B6 mice, acute surface incongruity was significantly correlated to the severity of PTA (R 2 = 0.988; p = .0006), but not in MRL mice (R 2 = 0.224; p = .220). PINP concentrations significantly decreased immediately post-fx in B6 mice (p = .023) but not in MRL mice, indicating higher bone synthesis in MRL mice. MRL/MpJ mice demonstrate a unique biologic response to articular fracture such that the observed articular bone surface displacement does not correlate with the severity of subsequent PTA. Clinical Relevance: Identifying therapies to enhance acute biologic repair following articular fracture may mitigate the risk of articular surface displacement for PTA.Item Open Access Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration.(Biomaterials, 2013-10) Francisco, Aubrey T; Mancino, Robert J; Bowles, Robby D; Brunger, Jonathan M; Tainter, David M; Chen, Yi-Te; Richardson, William J; Guilak, Farshid; Setton, Lori ACell delivery to the pathological intervertebral disc (IVD) has significant therapeutic potential for enhancing IVD regeneration. The development of injectable biomaterials that retain delivered cells, promote cell survival, and maintain or promote an NP cell phenotype in vivo remains a significant challenge. Previous studies have demonstrated NP cell - laminin interactions in the nucleus pulposus (NP) region of the IVD that promote cell attachment and biosynthesis. These findings suggest that incorporating laminin ligands into carriers for cell delivery may be beneficial for promoting NP cell survival and phenotype. Here, an injectable, laminin-111 functionalized poly(ethylene glycol) (PEG-LM111) hydrogel was developed as a biomaterial carrier for cell delivery to the IVD. We evaluated the mechanical properties of the PEG-LM111 hydrogel, and its ability to retain delivered cells in the IVD space. Gelation occurred in approximately 20 min without an initiator, with dynamic shear moduli in the range of 0.9-1.4 kPa. Primary NP cell retention in cultured IVD explants was significantly higher over 14 days when cells were delivered within a PEG-LM111 carrier, as compared to cells in liquid suspension. Together, these results suggest this injectable laminin-functionalized biomaterial may be an easy to use carrier for delivering cells to the IVD.