Browsing by Author "Guptill, Jeffrey T"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access B10 Cell Frequencies and Suppressive Capacity in Myasthenia Gravis Are Associated with Disease Severity.(Front Neurol, 2017) Yi, John S; Russo, Melissa A; Massey, Janice M; Juel, Vern; Hobson-Webb, Lisa D; Gable, Karissa; Raja, Shruti M; Balderson, Kristina; Weinhold, Kent J; Guptill, Jeffrey TMyasthenia gravis (MG) is a T cell-dependent, B cell-mediated disease. The mechanisms for loss of self-tolerance in this disease are not well understood, and recently described regulatory B cell (Breg) subsets have not been thoroughly investigated. B10 cells are a subset of Bregs identified by the production of the immunosuppressive cytokine, interleukin-10 (IL-10). B10 cells are known to strongly inhibit B- and T-cell inflammatory responses in animal models and are implicated in human autoimmunity. In this study, we examined quantitative and qualitative aspects of B10 cells in acetylcholine receptor autoantibody positive MG (AChR-MG) patients and healthy controls. We observed reduced B10 cell frequencies in AChR-MG patients, which inversely correlated with disease severity. Disease severity also affected the function of B10 cells, as B10 cells in the moderate/severe group of MG patients were less effective in suppressing CD4 T-cell proliferation. These results suggest that B10 cell frequencies may be a useful biomarker of disease severity, and therapeutics designed to restore B10 cell frequencies could hold promise as a treatment for this disease through restoration of self-tolerance.Item Open Access Characterization of B cells in muscle-specific kinase antibody myasthenia gravis.(Neurol Neuroimmunol Neuroinflamm, 2015-04) Guptill, Jeffrey T; Yi, John S; Sanders, Donald B; Guidon, Amanda C; Juel, Vern C; Massey, Janice M; Howard, James F; Scuderi, Flavia; Bartoccioni, Emanuela; Evoli, Amelia; Weinhold, Kent JOBJECTIVE: To characterize B-cell subsets in patients with muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). METHODS: In accordance with Human Immunology Project Consortium guidelines, we performed polychromatic flow cytometry and ELISA assays in peripheral blood samples from 18 patients with MuSK MG and 9 healthy controls. To complement a B-cell phenotype assay that evaluated maturational subsets, we measured B10 cell percentages, plasma B cell-activating factor (BAFF) levels, and MuSK antibody titers. Immunologic variables were compared with healthy controls and clinical outcome measures. RESULTS: As expected, patients treated with rituximab had high percentages of transitional B cells and plasmablasts and thus were excluded from subsequent analysis. The remaining patients with MuSK MG and controls had similar percentages of total B cells and naïve, memory, isotype-switched, plasmablast, and transitional B-cell subsets. However, patients with MuSK MG had higher BAFF levels and lower percentages of B10 cells. In addition, we observed an increase in MuSK antibody levels with more severe disease. CONCLUSIONS: We found prominent B-cell pathology in the distinct form of MG with MuSK autoantibodies. Increased BAFF levels have been described in other autoimmune diseases, including acetylcholine receptor antibody-positive MG. This finding suggests a role for BAFF in the survival of B cells in MuSK MG, which has important therapeutic implications. B10 cells, a recently described rare regulatory B-cell subset that potently blocks Th1 and Th17 responses, were reduced, which suggests a potential mechanism for the breakdown in immune tolerance in patients with MuSK MG.Item Open Access Establishment of normative ranges of the healthy human immune system with comprehensive polychromatic flow cytometry profiling.(PloS one, 2019-01) Yi, John S; Rosa-Bray, Marilyn; Staats, Janet; Zakroysky, Pearl; Chan, Cliburn; Russo, Melissa A; Dumbauld, Chelsae; White, Scott; Gierman, Todd; Weinhold, Kent J; Guptill, Jeffrey TExisting normative flow cytometry data have several limitations including small sample sizes, incompletely described study populations, variable flow cytometry methodology, and limited depth for defining lymphocyte subpopulations. To overcome these issues, we defined high-dimensional flow cytometry reference ranges for the healthy human immune system using Human Immunology Project Consortium methodologies after carefully screening 127 subjects deemed healthy through clinical and laboratory testing. We enrolled subjects in the following age cohorts: 18-29 years, 30-39, 40-49, and 50-66 and enrolled cohorts to ensure an even gender distribution and at least 30% non-Caucasians. From peripheral blood mononuclear cells, flow cytometry reference ranges were defined for >50 immune subsets including T-cell (activation, maturation, T follicular helper and regulatory T cell), B-cell, and innate cells. We also developed a web tool for visualization of the dataset and download of raw data. This dataset provides the immunology community with a resource to compare and extract data from rigorously characterized healthy subjects across age groups, gender and race.Item Open Access Normative dataset for plasma cytokines in healthy human adults.(Data in brief, 2021-04) Li, Yingkai; Yi, John S; Russo, Melissa A; Rosa-Bray, Marilyn; Weinhold, Kent J; Guptill, Jeffrey TWe determined normative data for plasma cytokines established from a cohort of 126 carefully screened healthy adults aged 18 to 64 years. Participants were enrolled to ensure an even age and sex distribution and to include at least 30% non-Caucasians. Plasma cytokines for 18 analytes were tested by multiplex immunoassay. The data are presented by age cohort (18-29 years, 30-39, 40-49, and 50-66), as well as by sex and racial background. This dataset complements published normative ranges of cellular subsets generated by comprehensive polychromatic flow cytometry analysis of the healthy human immune system [1]. These data are available to researchers and have value as a reference range for research involving peripheral cytokines.Item Open Access Prolonged B-cell depletion in MuSK myasthenia gravis following rituximab treatment.(Muscle Nerve, 2013-12) Yi, John S; Decroos, Emily C; Sanders, Donald B; Weinhold, Kent J; Guptill, Jeffrey T