Browsing by Author "Hain, R"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Notes on the Universal Elliptic KZB Equation(Pure and Applied Mathematics Quarterly, 2020-01-30) Hain, RThe universal elliptic KZB equation is the integrable connection on the pro-vector bundle over M_{1,2} whose fiber over the point corresponding to the elliptic curve E and a non-zero point x of E is the unipotent completion of \pi_1(E-{0},x). This was written down independently by Calaque, Enriquez and Etingof (arXiv:math/0702670), and by Levin and Racinet (arXiv:math/0703237). It generalizes the KZ-equation in genus 0. These notes are in four parts. The first two parts provide a detailed exposition of this connection (following Levin-Racinet); the third is a leisurely exploration of the connection in which, for example, we compute the limit mixed Hodge structure on the unipotent fundamental group of the Tate curve minus its identity. In the fourth part we elaborate on ideas of Levin and Racinet and explicitly compute the connection over the moduli space of elliptic curves with a non-zero abelian differential, showing that it is defined over Q.Item Open Access Rational points of universal curves(Journal of the American Mathematical Society, 2011-07-01) Hain, RItem Open Access The abelianization of the Johnson kernel(Journal of the European Mathematical Society, 2014-01-01) Dimca, A; Hain, R; Papadima, SWe prove that the first complex homology of the Johnson subgroup of the Torelli group Tg is a non-trivial, unipotent Tg-module for all g ≥ 4 and give an explicit presentation of it as a Sym H 1(Tg,C)-module when g ≥ 6. We do this by proving that, for a finitely generated group G satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the infinitesimal Alexander invariant of the associated graded Lie algebra of G. In this setup, we also obtain a precise nilpotence test. © European Mathematical Society 2014.