Browsing by Author "Hakim, Vincent"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Cerebellar learning using perturbations.(eLife, 2018-11-12) Bouvier, Guy; Aljadeff, Johnatan; Clopath, Claudia; Bimbard, Célian; Ranft, Jonas; Blot, Antonin; Nadal, Jean-Pierre; Brunel, Nicolas; Hakim, Vincent; Barbour, BorisThe cerebellum aids the learning of fast, coordinated movements. According to current consensus, erroneously active parallel fibre synapses are depressed by complex spikes signalling movement errors. However, this theory cannot solve the credit assignment problem of processing a global movement evaluation into multiple cell-specific error signals. We identify a possible implementation of an algorithm solving this problem, whereby spontaneous complex spikes perturb ongoing movements, create eligibility traces and signal error changes guiding plasticity. Error changes are extracted by adaptively cancelling the average error. This framework, stochastic gradient descent with estimated global errors (SGDEGE), predicts synaptic plasticity rules that apparently contradict the current consensus but were supported by plasticity experiments in slices from mice under conditions designed to be physiological, highlighting the sensitivity of plasticity studies to experimental conditions. We analyse the algorithm's convergence and capacity. Finally, we suggest SGDEGE may also operate in the basal ganglia.Item Open Access Neuronal morphology generates high-frequency firing resonance.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2015-05) Ostojic, Srdjan; Szapiro, Germán; Schwartz, Eric; Barbour, Boris; Brunel, Nicolas; Hakim, VincentThe attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo.Item Open Access Single neuron dynamics and computation.(Current opinion in neurobiology, 2014-04) Brunel, Nicolas; Hakim, Vincent; Richardson, Magnus JEAt the single neuron level, information processing involves the transformation of input spike trains into an appropriate output spike train. Building upon the classical view of a neuron as a threshold device, models have been developed in recent years that take into account the diverse electrophysiological make-up of neurons and accurately describe their input-output relations. Here, we review these recent advances and survey the computational roles that they have uncovered for various electrophysiological properties, for dendritic arbor anatomy as well as for short-term synaptic plasticity.