Browsing by Author "Harfouche, Mark"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Gigapixel imaging with a novel multi-camera array microscope.(eLife, 2022-12) Thomson, Eric E; Harfouche, Mark; Kim, Kanghyun; Konda, Pavan C; Seitz, Catherine W; Cooke, Colin; Xu, Shiqi; Jacobs, Whitney S; Blazing, Robin; Chen, Yang; Sharma, Sunanda; Dunn, Timothy W; Park, Jaehee; Horstmeyer, Roarke W; Naumann, Eva AThe dynamics of living organisms are organized across many spatial scales. However, current cost-effective imaging systems can measure only a subset of these scales at once. We have created a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, we computationally generate gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This allows us to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales, including larval zebrafish, fruit flies, nematodes, carpenter ants, and slime mold. Further, the MCAM architecture allows stereoscopic tracking of the z-position of organisms using the overlapping field of view from adjacent cameras. Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms across a wide range of spatial scales.Item Open Access Parallelized computational 3D video microscopy of freely moving organisms at multiple gigapixels per second.(Nature photonics, 2023-05) Zhou, Kevin C; Harfouche, Mark; Cooke, Colin L; Park, Jaehee; Konda, Pavan C; Kreiss, Lucas; Kim, Kanghyun; Jönsson, Joakim; Doman, Thomas; Reamey, Paul; Saliu, Veton; Cook, Clare B; Zheng, Maxwell; Bechtel, John P; Bègue, Aurélien; McCarroll, Matthew; Bagwell, Jennifer; Horstmeyer, Gregor; Bagnat, Michel; Horstmeyer, RoarkeWide field of view microscopy that can resolve 3D information at high speed and spatial resolution is highly desirable for studying the behaviour of freely moving model organisms. However, it is challenging to design an optical instrument that optimises all these properties simultaneously. Existing techniques typically require the acquisition of sequential image snapshots to observe large areas or measure 3D information, thus compromising on speed and throughput. Here, we present 3D-RAPID, a computational microscope based on a synchronized array of 54 cameras that can capture high-speed 3D topographic videos over an area of 135 cm2, achieving up to 230 frames per second at spatiotemporal throughputs exceeding 5 gigapixels per second. 3D-RAPID employs a 3D reconstruction algorithm that, for each synchronized snapshot, fuses all 54 images into a composite that includes a co-registered 3D height map. The self-supervised 3D reconstruction algorithm trains a neural network to map raw photometric images to 3D topography using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. The resulting reconstruction process is thus robust to generalization errors and scales to arbitrarily long videos from arbitrarily sized camera arrays. We demonstrate the broad applicability of 3D-RAPID with collections of several freely behaving organisms, including ants, fruit flies, and zebrafish larvae.