Browsing by Author "Haynes, Carol"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A functional polymorphism in the 5HTR2C gene associated with stress responses also predicts incident cardiovascular events.(PLoS One, 2013) Brummett, Beverly H; Babyak, Michael A; Jiang, Rong; Shah, Svati H; Becker, Richard C; Haynes, Carol; Chryst-Ladd, Megan; Craig, Damian M; Hauser, Elizabeth R; Siegler, Ilene C; Kuhn, Cynthia M; Singh, Abanish; Williams, Redford BPreviously we have shown that a functional nonsynonymous single nucleotide polymorphism (rs6318) of the 5HTR2C gene located on the X-chromosome is associated with hypothalamic-pituitary-adrenal axis response to a stress recall task, and with endophenotypes associated with cardiovascular disease (CVD). These findings suggest that individuals carrying the rs6318 Ser23 C allele will be at higher risk for CVD compared to Cys23 G allele carriers. The present study examined allelic variation in rs6318 as a predictor of coronary artery disease (CAD) severity and a composite endpoint of all-cause mortality or myocardial infarction (MI) among Caucasian participants consecutively recruited through the cardiac catheterization laboratory at Duke University Hospital (Durham, NC) as part of the CATHGEN biorepository. Study population consisted of 6,126 Caucasian participants (4,036 [65.9%] males and 2,090 [34.1%] females). A total of 1,769 events occurred (1,544 deaths and 225 MIs; median follow-up time = 5.3 years, interquartile range = 3.3-8.2). Unadjusted Cox time-to-event regression models showed, compared to Cys23 G carriers, males hemizygous for Ser23 C and females homozygous for Ser23C were at increased risk for the composite endpoint of all-cause death or MI: Hazard Ratio (HR) = 1.47, 95% confidence interval (CI) = 1.17, 1.84, p = .0008. Adjusting for age, rs6318 genotype was not related to body mass index, diabetes, hypertension, dyslipidemia, smoking history, number of diseased coronary arteries, or left ventricular ejection fraction in either males or females. After adjustment for these covariates the estimate for the two Ser23 C groups was modestly attenuated, but remained statistically significant: HR = 1.38, 95% CI = 1.10, 1.73, p = .005. These findings suggest that this functional polymorphism of the 5HTR2C gene is associated with increased risk for CVD mortality and morbidity, but this association is apparently not explained by the association of rs6318 with traditional risk factors or conventional markers of atherosclerotic disease.Item Open Access Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events.(Circ Cardiovasc Genet, 2010-04) Shah, Svati H; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Crosslin, David R; Haynes, Carol; Dungan, Jennifer; Newby, L Kristin; Hauser, Elizabeth R; Ginsburg, Geoffrey S; Newgard, Christopher B; Kraus, William EBACKGROUND: Molecular tools may provide insight into cardiovascular risk. We assessed whether metabolites discriminate coronary artery disease (CAD) and predict risk of cardiovascular events. METHODS AND RESULTS: We performed mass-spectrometry-based profiling of 69 metabolites in subjects from the CATHGEN biorepository. To evaluate discriminative capabilities of metabolites for CAD, 2 groups were profiled: 174 CAD cases and 174 sex/race-matched controls ("initial"), and 140 CAD cases and 140 controls ("replication"). To evaluate the capability of metabolites to predict cardiovascular events, cases were combined ("event" group); of these, 74 experienced death/myocardial infarction during follow-up. A third independent group was profiled ("event-replication" group; n=63 cases with cardiovascular events, 66 controls). Analysis included principal-components analysis, linear regression, and Cox proportional hazards. Two principal components analysis-derived factors were associated with CAD: 1 comprising branched-chain amino acid metabolites (factor 4, initial P=0.002, replication P=0.01), and 1 comprising urea cycle metabolites (factor 9, initial P=0.0004, replication P=0.01). In multivariable regression, these factors were independently associated with CAD in initial (factor 4, odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74; P=0.02; factor 9, OR, 0.67; 95% CI, 0.52 to 0.87; P=0.003) and replication (factor 4, OR, 1.43; 95% CI, 1.07 to 1.91; P=0.02; factor 9, OR, 0.66; 95% CI, 0.48 to 0.91; P=0.01) groups. A factor composed of dicarboxylacylcarnitines predicted death/myocardial infarction (event group hazard ratio 2.17; 95% CI, 1.23 to 3.84; P=0.007) and was associated with cardiovascular events in the event-replication group (OR, 1.52; 95% CI, 1.08 to 2.14; P=0.01). CONCLUSIONS: Metabolite profiles are associated with CAD and subsequent cardiovascular events.Item Open Access Genome-wide linkage analysis of cardiovascular disease biomarkers in a large, multigenerational family.(PLoS One, 2013) Nolan, Daniel; Kraus, William E; Hauser, Elizabeth; Li, Yi-Ju; Thompson, Dana K; Johnson, Jessica; Chen, Hsiang-Cheng; Nelson, Sarah; Haynes, Carol; Gregory, Simon G; Kraus, Virginia B; Shah, Svati HGiven the importance of cardiovascular disease (CVD) to public health and the demonstrated heritability of both disease status and its related risk factors, identifying the genetic variation underlying these susceptibilities is a critical step in understanding the pathogenesis of CVD and informing prevention and treatment strategies. Although one can look for genetic variation underlying susceptibility to CVD per se, it can be difficult to define the disease phenotype for such a qualitative analysis and CVD itself represents a convergence of diverse etiologic pathways. Alternatively, one can study the genetics of intermediate traits that are known risk factors for CVD, which can be measured quantitatively. Using the latter strategy, we have measured 21 cardiovascular-related biomarkers in an extended multigenerational pedigree, the CARRIAGE family (Carolinas Region Interaction of Aging, Genes, and Environment). These biomarkers belong to inflammatory and immune, connective tissue, lipid, and hemostasis pathways. Of these, 18 met our quality control standards. Using the pedigree and biomarker data, we have estimated the broad sense heritability (H2) of each biomarker (ranging from 0.09-0.56). A genome-wide panel of 6,015 SNPs was used subsequently to map these biomarkers as quantitative traits. Four showed noteworthy evidence for linkage in multipoint analysis (LOD score ≥ 2.6): paraoxonase (chromosome 8p11, 21), the chemokine RANTES (22q13.33), matrix metalloproteinase 3 (MMP3, 17p13.3), and granulocyte colony stimulating factor (GCSF, 8q22.1). Identifying the causal variation underlying each linkage score will help to unravel the genetic architecture of these quantitative traits and, by extension, the genetic architecture of cardiovascular risk.Item Open Access Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure With Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure.(J Am Heart Assoc, 2016-07-29) Hunter, Wynn G; Kelly, Jacob P; McGarrah, Robert W; Khouri, Michel G; Craig, Damian; Haynes, Carol; Ilkayeva, Olga; Stevens, Robert D; Bain, James R; Muehlbauer, Michael J; Newgard, Christopher B; Felker, G Michael; Hernandez, Adrian F; Velazquez, Eric J; Kraus, William E; Shah, Svati HBACKGROUND: Metabolic impairment is an important contributor to heart failure (HF) pathogenesis and progression. Dysregulated metabolic pathways remain poorly characterized in patients with HF and preserved ejection fraction (HFpEF). We sought to determine metabolic abnormalities in HFpEF and identify pathways differentially altered in HFpEF versus HF with reduced ejection fraction (HFrEF). METHODS AND RESULTS: We identified HFpEF cases, HFrEF controls, and no-HF controls from the CATHGEN study of sequential patients undergoing cardiac catheterization. HFpEF cases (N=282) were defined by left ventricular ejection fraction (LVEF) ≥45%, diastolic dysfunction grade ≥1, and history of HF; HFrEF controls (N=279) were defined similarly, except for having LVEF <45%. No-HF controls (N=191) had LVEF ≥45%, normal diastolic function, and no HF diagnosis. Targeted mass spectrometry and enzymatic assays were used to quantify 63 metabolites in fasting plasma. Principal components analysis reduced the 63 metabolites to uncorrelated factors, which were compared across groups using ANCOVA. In basic and fully adjusted models, long-chain acylcarnitine factor levels differed significantly across groups (P<0.0001) and were greater in HFrEF than HFpEF (P=0.0004), both of which were greater than no-HF controls. We confirmed these findings in sensitivity analyses using stricter inclusion criteria, alternative LVEF thresholds, and adjustment for insulin resistance. CONCLUSIONS: We identified novel circulating metabolites reflecting impaired or dysregulated fatty acid oxidation that are independently associated with HF and differentially elevated in HFpEF and HFrEF. These results elucidate a specific metabolic pathway in HF and suggest a shared metabolic mechanism in HF along the LVEF spectrum.Item Open Access Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.(PLoS Genet, 2015-11) Kraus, William E; Muoio, Deborah M; Stevens, Robert; Craig, Damian; Bain, James R; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R; Gregory, Simon G; Newgard, Christopher B; Shah, Svati HLevels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.