Browsing by Author "Healy, Patrick"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access CTIM-10. REPRODUCIBILITY OF CLINICAL TRIALS USING CMV-TARGETED DENDRITIC CELL VACCINES IN PATIENTS WITH GLIOBLASTOMA(Neuro-Oncology, 2021-11-12) Batich, Kristen; Mitchell, Duane; Healy, Patrick; Herndon, James; Broadwater, Gloria; Michael, Gunn; Huang, Min-Nung; Hotchkiss, Kelly; Sanchez-Perez, Luis; Nair, Smita; Congdon, Kendra; Norberg, Pam; Weinhold, Kent; Archer, Gary; Reap, Elizabeth; Xie, Weihua; Shipes, Steven; Albrecht, Emily; Peters, Katherine; Randazzo, Dina; Johnson, Margaret; Landi, Daniel; Desjardins, Annick; Friedman, Henry; Vlahovic, Gordana; Reardon, David; Vredenburgh, James; Bigner, Darell; Khasraw, Mustafa; McLendon, Roger; Thompson, Eric; Cook, Steven; Fecci, Peter; Codd, Patrick; Floyd, Scott; Reitman, Zachary; Kirkpatrick, John; Friedman, Allan; Ashley, David M; Sampson, JohnAbstract INTRODUCTION Vaccination with dendritic cells (DCs) fares poorly in primary and recurrent glioblastoma (GBM). Moreover, GBM vaccine trials are often underpowered due to limited sample size. METHODS To address these limitations, we conducted three sequential clinical trials utilizing Cytomegalovirus (CMV)-specific DC vaccines in patients with primary GBM. Autologous DCs were generated and electroporated with mRNA encoding for the CMV protein pp65. Serial vaccination was given throughout adjuvant temozolomide cycles, and 111Indium radiolabeling was implemented to assess migration efficiency of DC vaccines. Patients were followed for median overall survival (mOS) and OS. RESULTS Our initial study was the phase II ATTAC study (NCT00639639; total n=12) with 6 patients randomized to vaccine site preconditioning with tetanus-diphtheria (Td) toxoid. This led to an expanded cohort trial (ATTAC-GM; NCT00639639) of 11 patients receiving CMV DC vaccines containing granulocyte-macrophage colony-stimulating factor (GM-CSF). Follow-up data from ATTAC and ATTAC-GM revealed 5-year OS rates of 33.3% (mOS 38.3 months; CI95 17.5-undefined) and 36.4% (mOS 37.7 months; CI95 18.2-109.1), respectively. ATTAC additionally revealed a significant increase in DC migration to draining lymph nodes following Td preconditioning (P=0.049). Increased DC migration was associated with OS (Cox proportional hazards model, HR=0.820, P=0.023). Td-mediated increased migration has been recapitulated in our larger confirmatory trial ELEVATE (NCT02366728) of 43 patients randomized to preconditioning (Wilcoxon rank sum, Td n=24, unpulsed DC n=19; 24h, P=0.031 and 48h, P=0.0195). In ELEVATE, median follow-up of 42.2 months revealed significantly longer OS in patients randomized to Td (P=0.026). The 3-year OS for Td-treated patients in ELEVATE was 34% (CI95 19-63%) compared to 6% given unpulsed DCs (CI95 1-42%). CONCLUSION We report reproducibility of our findings across three sequential clinical trials using CMV pp65 DCs. Despite their small numbers, these successive trials demonstrate consistent survival outcomes, thus supporting the efficacy of CMV DC vaccine therapy in GBM.Item Open Access Development of a Novel c-MET-Based CTC Detection Platform.(Mol Cancer Res, 2016-06) Zhang, Tian; Boominathan, Rengasamy; Foulk, Brad; Rao, Chandra; Kemeny, Gabor; Strickler, John H; Abbruzzese, James L; Harrison, Michael R; Hsu, David S; Healy, Patrick; Li, Jing; Pi, Cinthia; Prendergast, Katherine M; Hobbs, Carey; Gemberling, Sarah; George, Daniel J; Hurwitz, Herbert I; Connelly, Mark; Garcia-Blanco, Mariano A; Armstrong, Andrew JUNLABELLED: Amplification of the MET oncogene is associated with poor prognosis, metastatic dissemination, and drug resistance in many malignancies. We developed a method to capture and characterize circulating tumor cells (CTC) expressing c-MET using a ferromagnetic antibody. Immunofluorescence was used to characterize cells for c-MET, DAPI, and pan-CK, excluding CD45(+) leukocytes. The assay was validated using appropriate cell line controls spiked into peripheral blood collected from healthy volunteers (HV). In addition, peripheral blood was analyzed from patients with metastatic gastric, pancreatic, colorectal, bladder, renal, or prostate cancers. CTCs captured by c-MET were enumerated, and DNA FISH for MET amplification was performed. The approach was highly sensitive (80%) for MET-amplified cells, sensitive (40%-80%) for c-MET-overexpressed cells, and specific (100%) for both c-MET-negative cells and in 20 HVs. Of 52 patients with metastatic carcinomas tested, c-MET CTCs were captured in replicate samples from 3 patients [gastric, colorectal, and renal cell carcinoma (RCC)] with 6% prevalence. CTC FISH demonstrated that MET amplification in both gastric and colorectal cancer patients and trisomy 7 with gain of MET gene copies in the RCC patient. The c-MET CTC assay is a rapid, noninvasive, sensitive, and specific method for detecting MET-amplified tumor cells. CTCs with MET amplification can be detected in patients with gastric, colorectal, and renal cancers. IMPLICATIONS: This study developed a novel c-MET CTC assay for detecting c-MET CTCs in patients with MET amplification and warrants further investigation to determine its clinical applicability. Mol Cancer Res; 14(6); 539-47. ©2016 AACR.Item Open Access EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.(PLoS One, 2014) Miao, Hongsheng; Choi, Bryan D; Suryadevara, Carter M; Sanchez-Perez, Luis; Yang, Shicheng; De Leon, Gabriel; Sayour, Elias J; McLendon, Roger; Herndon, James E; Healy, Patrick; Archer, Gary E; Bigner, Darell D; Johnson, Laura A; Sampson, John HGlioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.Item Open Access HOUT-21. CHARACTERISTICS OF SHORT-TERM SURVIVAL IN PATIENTS WITH GLIOBLASTOMA: A RETROSPECTIVE ANALYSIS(Neuro-Oncology, 2019-11-11) Barbour, Andrew; Healy, Patrick; Lipp, Eric; Herndon, James; Thomas, Leslie; Johnson, Margaret; Ashley, David; Desjardins, Annick; Randazzo, Dina; Friedman, Henry; Kirkpatrick, John; Peters, KatherineAbstract We sought to identify characteristics of glioblastoma (GBM) patients with short survival (< 10 months) in order to identify prognostic factors useful for guiding treatment management. This is an IRB-approved retrospective analysis of adult newly diagnosed GBM patients from 2008–2016 who survived < 10 months from diagnosis. We extracted demographics, tumor characteristics, and treatment details. We calculated survival from surgical diagnosis to date of death. The cohort includes 197 subjects (61% male) with a median age of 68 years (range 19–94). The majority (93%) are non-Hispanic white. The cohort has a median survival of 144 days (95% CI: 130–160). We focused on traditional prognostic indicators, including extent of surgical resection and KPS. A majority had biopsy only (n=92, 46.7%) rather than gross total (n=59, 29.9%) or subtotal (n=46, 23.4%) resection. Moreover, 160 out of 197 patients had a documented KPS with a majority being below 90 (KPS=70–80 (n=96); KPS < 70 (n=31)). Of 179 patients with data on RT course, 18% (n=32) received no RT or opted for hospice after diagnosis, 3% (n=6) received only RT, 54% (n=97) received RT+temozolomide (TMZ), and 24% (n=43) received RT+TMZ+bevacizumab. Of the 147 subjects receiving RT, 79% completed their RT course as prescribed. Most commonly, RT was prescribed as a 6- to 6-1/2-week course (85%), typically 59.4 Gy (45Gy primary, 14.4Gy boost) over 33 fractions or 60 Gy over 30 fractions. In contrast, 15% received a 3-week RT course, typically scheduled as 15 fractions of 2.667 Gy. We concluded that GBM patients with survival < 10 months were more likely to have biopsy only and a KPS < 90, notably associated with poorer prognosis. We continue to explore this dataset for further prognostic factors, particularly inability to complete planned RT course, and are comparing these traits to a larger cohort.Item Open Access Improved efficacy against malignant brain tumors with EGFRwt/EGFRvIII targeting immunotoxin and checkpoint inhibitor combinations.(Journal for immunotherapy of cancer, 2019-05-29) Chandramohan, Vidyalakshmi; Bao, Xuhui; Yu, Xin; Parker, Scott; McDowall, Charlotte; Yu, Yen-Rei; Healy, Patrick; Desjardins, Annick; Gunn, Michael D; Gromeier, Matthias; Nair, Smita K; Pastan, Ira H; Bigner, Darell DBackground
D2C7-IT is a novel immunotoxin (IT) targeting wild-type epidermal growth factor receptor (EGFRwt) and mutant EGFR variant III (EGFRvIII) proteins in glioblastoma. In addition to inherent tumoricidal activity, immunotoxins induce secondary immune responses through the activation of T cells. However, glioblastoma-induced immune suppression is a major obstacle to an effective and durable immunotoxin-mediated antitumor response. We hypothesized that D2C7-IT-induced immune response could be effectively augmented in combination with αCTLA-4/αPD-1/αPD-L1 therapies in murine models of glioma.Methods
To study this, we overexpressed the D2C7-IT antigen, murine EGFRvIII (dmEGFRvIII), in established glioma lines, CT-2A and SMA560. The reactivity and therapeutic efficacy of D2C7-IT against CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII cells was determined by flow cytometry and in vitro cytotoxicity assays, respectively. Antitumor efficacy of D2C7-IT was examined in immunocompetent, intracranial murine glioma models and the role of T cells was assessed by CD4+ and CD8+ T cell depletion. In vivo efficacy of D2C7-IT/αCTLA-4/αPD-1 monotherapy or D2C7-IT+αCTLA-4/αPD-1 combination therapy was evaluated in subcutaneous unilateral and bilateral CT-2A-dmEGFRvIII glioma-bearing immunocompetent mice. Further, antitumor efficacy of D2C7-IT+αCTLA-4/αPD-1/αPD-L1/αTim-3/αLag-3/αCD73 combination therapy was evaluated in intracranial CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII glioma-bearing mice. Pairwise differences in survival curves were assessed using the generalized Wilcoxon test.Results
D2C7-IT effectively killed CT-2A-dmEGFRvIII (IC50 = 0.47 ng/mL) and SMA560-dmEGFRvIII (IC50 = 1.05 ng/mL) cells in vitro. Treatment of intracranial CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII tumors with D2C7-IT prolonged survival (P = 0.0188 and P = 0.0057, respectively), which was significantly reduced by the depletion of CD4+ and CD8+ T cells. To augment antitumor immune responses, we combined D2C7-IT with αCTLA-4/αPD-1 in an in vivo subcutaneous CT-2A-dmEGFRvIII model. Tumor-bearing mice exhibited complete tumor regressions (4/10 in D2C7-IT+αCTLA-4 and 5/10 in D2C7-IT+αPD-1 treatment groups), and combination therapy-induced systemic antitumor response was effective against both dmEGFRvIII-positive and dmEGFRvIII-negative CT-2A tumors. In a subcutaneous bilateral CT-2A-dmEGFRvIII model, D2C7-IT+αCTLA-4/αPD-1 combination therapies showed dramatic regression of the treated tumors and measurable regression of untreated tumors. Notably, in CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII intracranial glioma models, D2C7-IT+αPD-1/αPD-L1 combinations improved survival, and in selected cases generated cures and protection against tumor re-challenge.Conclusions
These data support the development of D2C7-IT and immune checkpoint blockade combinations for patients with malignant glioma.Item Open Access Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas.(Oncotarget, 2014-03-30) Killela, Patrick J; Pirozzi, Christopher J; Healy, Patrick; Reitman, Zachary J; Lipp, Eric; Rasheed, B Ahmed; Yang, Rui; Diplas, Bill H; Wang, Zhaohui; Greer, Paula K; Zhu, Huishan; Wang, Catherine Y; Carpenter, Austin B; Friedman, Henry; Friedman, Allan H; Keir, Stephen T; He, Jie; He, Yiping; McLendon, Roger E; Herndon, James E; Yan, Hai; Bigner, Darell DFrequent mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) and the promoter of telomerase reverse transcriptase (TERT) represent two significant discoveries in glioma genomics. Understanding the degree to which these two mutations co-occur or occur exclusively of one another in glioma subtypes presents a unique opportunity to guide glioma classification and prognosis. We analyzed the relationship between overall survival (OS) and the presence of IDH1/2 and TERT promoter mutations in a panel of 473 adult gliomas. We hypothesized and show that genetic signatures capable of distinguishing among several types of gliomas could be established providing clinically relevant information that can serve as an adjunct to histopathological diagnosis. We found that mutations in the TERT promoter occurred in 74.2% of glioblastomas (GBM), but occurred in a minority of Grade II-III astrocytomas (18.2%). In contrast, IDH1/2 mutations were observed in 78.4% of Grade II-III astrocytomas, but were uncommon in primary GBM. In oligodendrogliomas, TERT promoter and IDH1/2 mutations co-occurred in 79% of cases. Patients whose Grade III-IV gliomas exhibit TERT promoter mutations alone predominately have primary GBMs associated with poor median OS (11.5 months). Patients whose Grade III-IV gliomas exhibit IDH1/2 mutations alone predominately have astrocytic morphologies and exhibit a median OS of 57 months while patients whose tumors exhibit both TERT promoter and IDH1/2 mutations predominately exhibit oligodendroglial morphologies and exhibit median OS of 125 months. Analyzing gliomas based on their genetic signatures allows for the stratification of these patients into distinct cohorts, with unique prognosis and survival.Item Open Access Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma.(Oncoimmunology, 2018-01) Suryadevara, Carter M; Desai, Rupen; Abel, Melissa L; Riccione, Katherine A; Batich, Kristen A; Shen, Steven H; Chongsathidkiet, Pakawat; Gedeon, Patrick C; Elsamadicy, Aladine A; Snyder, David J; Herndon, James E; Healy, Patrick; Archer, Gary E; Choi, Bryan D; Fecci, Peter E; Sampson, John H; Sanchez-Perez, LuisAdoptive transfer of T cells expressing chimeric antigen receptors (CARs) is an effective immunotherapy for B-cell malignancies but has failed in some solid tumors clinically. Intracerebral tumors may pose challenges that are even more significant. In order to devise a treatment strategy for patients with glioblastoma (GBM), we evaluated CARs as a monotherapy in a murine model of GBM. CARs exhibited poor expansion and survival in circulation and failed to treat syngeneic and orthotopic gliomas. We hypothesized that CAR engraftment would benefit from host lymphodepletion prior to immunotherapy and that this might be achievable by using temozolomide (TMZ), which is standard treatment for these patients and has lymphopenia as its major side effect. We modelled standard of care temozolomide (TMZSD) and dose-intensified TMZ (TMZDI) in our murine model. Both regimens are clinically approved and provide similar efficacy. Only TMZDI pretreatment prompted dramatic CAR proliferation and enhanced persistence in circulation compared to treatment with CARs alone or TMZSD + CARs. Bioluminescent imaging revealed that TMZDI + CARs induced complete regression of 21-day established brain tumors, which correlated with CAR abundance in circulation. Accordingly, TMZDI + CARs significantly prolonged survival and led to long-term survivors. These findings are highly consequential, as it suggests that GBM patients may require TMZDI as first line chemotherapy prior to systemic CAR infusion to promote CAR engraftment and antitumor efficacy. On this basis, we have initiated a phase I trial in patients with newly diagnosed GBM incorporating TMZDI as a preconditioning regimen prior to CAR immunotherapy (NCT02664363).