Browsing by Author "Hebbar, P"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Asymptotic behavior of branching diffusion processes in periodic mediaHebbar, P; Koralov, L; Nolen, JWe study the asymptotic behavior of branching diffusion processes in periodic media. For a super-critical branching process, we distinguish two types of behavior for the normalized number of particles in a bounded domain, depending on the distance of the domain from the region where the bulk of the particles is located. At distances that grow linearly in time, we observe intermittency (i.e., the $k$-th moment dominates the $k$-th power of the first moment for some $k$), while, at distances that grow sub-linearly in time, we show that all the moments converge. A key ingredient in our analysis is a sharp estimate of the transition kernel for the branching process, valid up to linear in time distances from the location of the initial particle.Item Open Access Higher order asymptotics for large deviations -- Part IFernando, K; Hebbar, PFor sequences of non-lattice weakly dependent random variables, we obtain asymptotic expansions for Large Deviation Principles. These expansions, commonly referred to as strong large deviation results, are in the spirit of Edgeworth Expansions for the Central Limit Theorem. We apply our results to show that Diophantine iid sequences, finite state Markov chains, strongly ergodic Markov chains and Birkhoff sums of smooth expanding maps & subshifts of finite type satisfy these strong large deviation results.Item Open Access Higher order asymptotics for large deviations -- Part IIFernando, K; Hebbar, PWe obtain asymptotic expansions for the large deviation principle (LDP) for continuous time stochastic processes with weakly dependent increments. As a key example, we show that additive functionals of solutions of stochastic differential equations (SDEs) satisfying H\"ormander condition on a $d-$dimensional compact manifold admit these asymptotic expansions of all orders.Item Open Access Multi-type branching processes with time-dependent branching rates(Journal of Applied Probability, 2018-09-01) Dolgopyat, D; Hebbar, P; Koralov, L; Perlman, MCopyright © Applied Probability Trust 2018. Under mild nondegeneracy assumptions on branching rates in each generation, we provide a criterion for almost sure extinction of a multi-type branching process with time-dependent branching rates. We also provide a criterion for the total number of particles (conditioned on survival and divided by the expectation of the resulting random variable) to approach an exponential random variable as time goes to ∞.