Browsing by Author "Hile, Connor"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Intensity- and timing-dependent modulation of motion perception with transcranial magnetic stimulation of visual cortex.(Neuropsychologia, 2020-10) Gamboa Arana, Olga Lucia; Palmer, Hannah; Dannhauer, Moritz; Hile, Connor; Liu, Sicong; Hamdan, Rena; Brito, Alexandra; Cabeza, Roberto; Davis, Simon W; Peterchev, Angel V; Sommer, Marc A; Appelbaum, Lawrence GDespite the widespread use of transcranial magnetic stimulation (TMS) in research and clinical care, the dose-response relations and neurophysiological correlates of modulatory effects remain relatively unexplored. To fill this gap, we studied modulation of visual processing as a function of TMS parameters. Our approach combined electroencephalography (EEG) with application of single pulse TMS to visual cortex as participants performed a motion perception task. During each participants' first visit, motion coherence thresholds, 64-channel visual evoked potentials (VEPs), and TMS resting motor thresholds (RMT) were measured. In second and third visits, single pulse TMS was delivered at one of two latencies, either 30 ms before the onset of motion or at the onset latency of the N2 VEP component derived from the first session. TMS was delivered at 0%, 80%, 100%, or 120% of RMT over the site of N2 peak activity, or at 120% over vertex. Behavioral results demonstrated a significant main effect of TMS timing on accuracy, with better performance when TMS was applied at the N2-Onset timing versus Pre-Onset, as well as a significant interaction, indicating that 80% intensity produced higher accuracy than other conditions at the N2-Onset. TMS effects on the P3 VEP showed reduced amplitudes in the 80% Pre-Onset condition, an increase for the 120% N2-Onset condition, and monotonic amplitude scaling with stimulation intensity. The N2 component was not affected by TMS. These findings reveal the influence of TMS intensity and timing on visual perception and electrophysiological responses, with optimal facilitation at stimulation intensities below RMT.Item Open Access Site-Specific Effects of Online rTMS during a Working Memory Task in Healthy Older Adults.(Brain sciences, 2020-04-27) Beynel, Lysianne; Davis, Simon W; Crowell, Courtney A; Dannhauer, Moritz; Lim, Wesley; Palmer, Hannah; Hilbig, Susan A; Brito, Alexandra; Hile, Connor; Luber, Bruce; Lisanby, Sarah H; Peterchev, Angel V; Cabeza, Roberto; Appelbaum, Lawrence GThe process of manipulating information within working memory is central to many cognitive functions, but also declines rapidly in old age. Improving this process could markedly enhance the health-span in older adults. The current pre-registered, randomized and placebo-controlled study tested the potential of online repetitive transcranial magnetic stimulation (rTMS) applied at 5 Hz over the left lateral parietal cortex to enhance working memory manipulation in healthy elderly adults. rTMS was applied, while participants performed a delayed-response alphabetization task with two individually titrated levels of difficulty. Coil placement and stimulation amplitude were calculated from fMRI activation maps combined with electric field modeling on an individual-subject basis in order to standardize dosing at the targeted cortical location. Contrary to the a priori hypothesis, active rTMS significantly decreased accuracy relative to sham, and only in the hardest difficulty level. When compared to the results from our previous study, in which rTMS was applied over the left prefrontal cortex, we found equivalent effect sizes but opposite directionality suggesting a site-specific effect of rTMS. These results demonstrate engagement of cortical working memory processing using a novel TMS targeting approach, while also providing prescriptions for future studies seeking to enhance memory through rTMS.