Browsing by Author "Hill, Andrew A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Pairing of competitive and topologically distinct regulatory modules enhances patterned gene expression.(Mol Syst Biol, 2008) Yanai, Itai; Baugh, L Ryan; Smith, Jessica J; Roehrig, Casey; Shen-Orr, Shai S; Claggett, Julia M; Hill, Andrew A; Slonim, Donna K; Hunter, Craig PBiological networks are inherently modular, yet little is known about how modules are assembled to enable coordinated and complex functions. We used RNAi and time series, whole-genome microarray analyses to systematically perturb and characterize components of a Caenorhabditis elegans lineage-specific transcriptional regulatory network. These data are supported by selected reporter gene analyses and comprehensive yeast one-hybrid and promoter sequence analyses. Based on these results, we define and characterize two modules composed of muscle- and epidermal-specifying transcription factors that function together within a single cell lineage to robustly specify multiple cell types. The expression of these two modules, although positively regulated by a common factor, is reliably segregated among daughter cells. Our analyses indicate that these modules repress each other, and we propose that this cross-inhibition coupled with their relative time of induction function to enhance the initial asymmetry in their expression patterns, thus leading to the observed invariant gene expression patterns and cell lineage. The coupling of asynchronous and topologically distinct modules may be a general principle of module assembly that functions to potentiate genetic switches.Item Open Access Synthetic lethal analysis of Caenorhabditis elegans posterior embryonic patterning genes identifies conserved genetic interactions.(Genome Biol, 2005) Baugh, L Ryan; Wen, Joanne C; Hill, Andrew A; Slonim, Donna K; Brown, Eugene L; Hunter, Craig PPhenotypic robustness is evidenced when single-gene mutations do not result in an obvious phenotype. It has been suggested that such phenotypic stability results from 'buffering' activities of homologous genes as well as non-homologous genes acting in parallel pathways. One approach to characterizing mechanisms of phenotypic robustness is to identify genetic interactions, specifically, double mutants where buffering is compromised. To identify interactions among genes implicated in posterior patterning of the Caenorhabditis elegans embryo, we measured synthetic lethality following RNA interference of 22 genes in 15 mutant strains. A pair of homologous T-box transcription factors (tbx-8 and tbx-9) is found to interact in both C. elegans and C. briggsae, indicating that their compensatory function is conserved. Furthermore, a muscle module is defined by transitive interactions between the MyoD homolog hlh-1, another basic helix-loop-helix transcription factor, hnd-1, and the MADS-box transcription factor unc-120. Genetic interactions within a homologous set of genes involved in vertebrate myogenesis indicate broad conservation of the muscle module and suggest that other genetic modules identified in C. elegans will be conserved.