Browsing by Author "Hochgeschwender, Ute"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Maintenance and neuronal differentiation of chicken induced pluripotent stem-like cells.(Stem Cells Int, 2014) Dai, Rui; Rossello, Ricardo; Chen, Chun-Chun; Kessler, Joeran; Davison, Ian; Hochgeschwender, Ute; Jarvis, Erich DPluripotent stem cells have the potential to become any cell in the adult body, including neurons and glia. Avian stem cells could be used to study questions, like vocal learning, that would be difficult to examine with traditional mouse models. Induced pluripotent stem cells (iPSCs) are differentiated cells that have been reprogrammed to a pluripotent stem cell state, usually using inducing genes or other molecules. We recently succeeded in generating avian iPSC-like cells using mammalian genes, overcoming a limitation in the generation and use of iPSCs in nonmammalian species (Rosselló et al., 2013). However, there were no established optimal cell culture conditions for avian iPSCs to establish long-term cell lines and thus to study neuronal differentiation in vitro. Here we present an efficient method of maintaining chicken iPSC-like cells and for differentiating them into action potential generating neurons.Item Open Access Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species.(Elife, 2013-09-03) Rosselló, Ricardo Antonio; Chen, Chun-Chun; Dai, Rui; Howard, Jason T; Hochgeschwender, Ute; Jarvis, Erich DCells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI:http://dx.doi.org/10.7554/eLife.00036.001.