Browsing by Author "Holbrook, MD"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Bridging the translational gap: Implementation of multimodal small animal imaging strategies for tumor burden assessment in a co-clinical trial(PLOS ONE) Blocker, SJ; Mowery, YM; Holbrook, MD; Qi, Y; Kirsch, DG; Johnson, GA; Badea, CTItem Open Access Dual source hybrid spectral micro-CT using an energy-integrating and a photon-counting detector.(Physics in medicine and biology, 2020-10-21) Holbrook, MD; Clark, DP; Badea, CTPreclinical micro-CT provides a hotbed in which to develop new imaging technologies, including spectral CT using photon counting detector (PCD) technology. Spectral imaging using PCDs promises to expand x-ray CT as a functional imaging modality, capable of molecular imaging, while maintaining CT's role as a powerful anatomical imaging modality. However, the utility of PCDs suffers due to distorted spectral measurements, affecting the accuracy of material decomposition. We attempt to improve material decomposition accuracy using our novel hybrid dual-source micro-CT system which combines a PCD and an energy integrating detector. Comparisons are made between PCD-only and hybrid CT results, both reconstructed with our iterative, multi-channel algorithm based on the split Bregman method and regularized with rank-sparse kernel regression. Multi-material decomposition is performed post-reconstruction for separation of iodine (I), gold (Au), gadolinium (Gd), and calcium (Ca). System performance is evaluated first in simulations, then in micro-CT phantoms, and finally in an in vivo experiment with a genetically modified p53fl/fl mouse cancer model with Au, Gd, and I nanoparticle (NP)-based contrasts agents. Our results show that the PCD-only and hybrid CT reconstructions offered very similar spatial resolution at 10% MTF (PCD: 3.50 lp mm-1; hybrid: 3.47 lp mm-1) and noise characteristics given by the noise power spectrum. For material decomposition we note successful separation of the four basis materials. We found that hybrid reconstruction reduces RMSE by an average of 37% across all material maps when compared to PCD-only of similar dose but does not provide much difference in terms of concentration accuracy. The in vivo results show separation of targeted Au and accumulated Gd NPs in the tumor from intravascular iodine NPs and bone. Hybrid spectral micro-CT can benefit nanotechnology and cancer research by providing quantitative imaging to test and optimize various NPs for diagnostic and therapeutic applications.Item Open Access MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice.(Tomography (Ann Arbor, Mich.), 2020-03) Holbrook, MD; Blocker, SJ; Mowery, YM; Badea, A; Qi, Y; Xu, ES; Kirsch, DG; Johnson, GA; Badea, CTSmall-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer therapies. However, considerable variability in image analysis techniques can lead to inconsistent results. We have developed quantitative imaging for application in the preclinical arm of a coclinical trial by using a genetically engineered mouse model of soft tissue sarcoma. Magnetic resonance imaging (MRI) images were acquired 1 day before and 1 week after radiation therapy. After the second MRI, the primary tumor was surgically removed by amputating the tumor-bearing hind limb, and mice were followed for up to 6 months. An automatic analysis pipeline was used for multicontrast MRI data using a convolutional neural network for tumor segmentation followed by radiomics analysis. We then calculated radiomics features for the tumor, the peritumoral area, and the 2 combined. The first radiomics analysis focused on features most indicative of radiation therapy effects; the second radiomics analysis looked for features that might predict primary tumor recurrence. The segmentation results indicated that Dice scores were similar when using multicontrast versus single T2-weighted data (0.863 vs 0.861). One week post RT, larger tumor volumes were measured, and radiomics analysis showed greater heterogeneity. In the tumor and peritumoral area, radiomics features were predictive of primary tumor recurrence (AUC: 0.79). We have created an image processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when studying new cancer therapies.Item Open Access The impact of respiratory gating on improving volume measurement of murine lung tumors in micro-CT imagingBlocker, SJ; Holbrook, MD; Mowery, YM; Sullivan, DC; Badea, CTABSTRACTSmall animal imaging has become essential in evaluating new cancer therapies as they are translated from the preclinical to clinical domain. However, preclinical imaging faces unique challenges that emphasize the gap between mouse and man. One example is the difference in breathing patterns and breath-holding ability, which can dramatically affect tumor burden assessment in lung tissue. As part of a co-clinical trial studying immunotherapy and radiotherapy in sarcomas, we are using micro-CT of the lungs to detect and measure metastases as a metric of disease progression. To effectively utilize metastatic disease detection as a metric of progression, we have addressed the impact of respiratory gating during micro-CT acquisition on improving lung tumor detection and volume quantitation. Accuracy and precision of lung tumor measurements with and without respiratory gating were studied by performing experiments with in vivo images, simulations, and a pocket phantom. When performing test-retest studies in vivo, the variance in volume calculations was 5.9% in gated images and 15.8% in non-gated images, compared to 2.9% in post-mortem images. Sensitivity of detection was examined in images with simulated tumors, demonstrating that reliable sensitivity (true positive rate (TPR) ≥ 90%) was achievable down to 1.0 mm3 lesions with respiratory gating, but was limited to ≥ 8.0 mm3 in non-gated images. Finally, a clinically-inspired “pocket phantom” was used during in vivo mouse scanning to aid in refining and assessing the gating protocols. Application of respiratory gating techniques reduced variance of repeated volume measurements and significantly improved the accuracy of tumor volume quantitation in vivo.Item Open Access The impact of respiratory gating on improving volume measurement of murine lung tumors in micro-CT imaging.(PloS one, 2020-01) Blocker, SJ; Holbrook, MD; Mowery, YM; Sullivan, DC; Badea, CTSmall animal imaging has become essential in evaluating new cancer therapies as they are translated from the preclinical to clinical domain. However, preclinical imaging faces unique challenges that emphasize the gap between mouse and man. One example is the difference in breathing patterns and breath-holding ability, which can dramatically affect tumor burden assessment in lung tissue. As part of a co-clinical trial studying immunotherapy and radiotherapy in sarcomas, we are using micro-CT of the lungs to detect and measure metastases as a metric of disease progression. To effectively utilize metastatic disease detection as a metric of progression, we have addressed the impact of respiratory gating during micro-CT acquisition on improving lung tumor detection and volume quantitation. Accuracy and precision of lung tumor measurements with and without respiratory gating were studied by performing experiments with in vivo images, simulations, and a pocket phantom. When performing test-retest studies in vivo, the variance in volume calculations was 5.9% in gated images and 15.8% in non-gated images, compared to 2.9% in post-mortem images. Sensitivity of detection was examined in images with simulated tumors, demonstrating that reliable sensitivity (true positive rate (TPR) ≥ 90%) was achievable down to 1.0 mm3 lesions with respiratory gating, but was limited to ≥ 8.0 mm3 in non-gated images. Finally, a clinically-inspired "pocket phantom" was used during in vivo mouse scanning to aid in refining and assessing the gating protocols. Application of respiratory gating techniques reduced variance of repeated volume measurements and significantly improved the accuracy of tumor volume quantitation in vivo.