Browsing by Author "Holloway, Zade"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Open Access Amitifadine, a triple reuptake inhibitor, reduces self-administration of the opiate remifentanil in rats.(Psychopharmacology, 2020-06) Levin, Edward D; Wells, Corinne; Hawkey, Andrew; Holloway, Zade; Blair, Graham; Vierling, Alexander; Ko, Ashley; Pace, Caroline; Modarres, John; McKinney, Anthony; Rezvani, Amir H; Rose, Jed ERationale
A variety of neural systems are involved in drug addiction, and some of these systems are shared across different addictive drugs. We have found several different types of drug treatments that successfully reduce nicotine self-administration.Objectives
The current set of studies is the first in a series to determine if drug treatments that have been found to significantly reduce nicotine self-administration would reduce opiate self-administration.Methods
Amitifadine, a triple reuptake inhibitor of dopamine, norepinephrine, and serotonin, was assessed in female Sprague-Dawley rats to determine whether it significantly reduces remifentanil self-administration with either acute or chronic treatment.Results
Acutely, amitifadine doses of 5, 10, and 20 mg/kg each significantly reduced remifentanil self-administration. In a chronic study, repeated treatment with 10 mg/kg of amitifadine continued to reduce remifentanil self-administration, even after the cessation of treatment. However, amitifadine was not found to attenuate the rise in remifentanil self-administration with continued access. This study and our earlier one showed that the 10 mg/kg amitifadine dose did not significantly affect food motivated responding. Amitifadine did not attenuate remifentanil-induced antinociception as measured on the hot plate test but extended and maintained antinociceptive effects.Conclusions
These studies show the promise of amitifadine as a treatment for countering opiate self-administration for adjunctive use with opioids for analgesia. Further studies are needed to determine the possible efficacy of amitifadine for combating opiate addiction or preventing it in humans during adjunctive use with opioids for chronic pain.Item Open Access Correction to: Amitifadine, a triple reuptake inhibitor, reduces self-administration of the opiate remifentanil in rats.(Psychopharmacology, 2021-04) Levin, Edward D; Wells, Corinne; Hawkey, Andrew; Holloway, Zade; Blair, Graham; Vierling, Alexander; Ko, Ashley; Pace, Caroline; Modarres, John; McKinney, Anthony; Rezvani, Amir H; Rose, Jed EOur article published in Psychopharmacology had a typographical error in the units of remifentanil infusion for selfadministration. The correct infusion dose of remifentanil is 0.3 µg/kg/infusion not 0.3 mg/kg/infusion.Item Open Access Embryonic exposure to benzo[a]pyrene causes age-dependent behavioral alterations and long-term metabolic dysfunction in zebrafish.(Neurotoxicology and teratology, 2022-09) Hawkey, Andrew B; Piatos, Perry; Holloway, Zade; Boyda, Jonna; Koburov, Reese; Fleming, Elizabeth; Di Giulio, Richard T; Levin, Edward DPolycyclic aromatic hydrocarbons (PAH) are products of incomplete combustion which are ubiquitous pollutants and constituents of harmful mixtures such as tobacco smoke, petroleum and creosote. Animal studies have shown that these compounds exert developmental toxicity in multiple organ systems, including the nervous system. The relative persistence of or recovery from these effects across the lifespan remain poorly characterized. These studies tested for persistence of neurobehavioral effects in AB* zebrafish exposed 5-120 h post-fertilization to a typical PAH, benzo[a]pyrene (BAP). Study 1 evaluated the neurobehavioral effects of a wide concentration range of BAP (0.02-10 μM) exposures from 5 to 120 hpf during larval (6 days) and adult (6 months) stages of development, while study 2 evaluated neurobehavioral effects of BAP (0.3-3 μM) from 5 to 120 hpf across four stages of development: larval (6 days), adolescence (2.5 months), adulthood (8 months) and late adulthood (14 months). Embryonic BAP exposure caused minimal effects on larval motility, but did cause neurobehavioral changes at later points in life. Embryonic BAP exposure led to nonmonotonic effects on adolescent activity (0.3 μM hyperactive, Study 2), which attenuated with age, as well as startle responses (0.2 μM enhanced, Study 1) at 6 months of age. Similar startle changes were also detected in Study 2 (1.0 μM), though it was observed that the phenotype shifted from reduced pretap activity to enhanced posttap activity from 8 to 14 months of age. Changes in the avoidance (0.02-10 μM, Study 1) and approach (reduced, 0.3 μM, Study 2) of aversive/social cues were also detected, with the latter attenuating from 8 to 14 months of age. Fish from study 2 were maintained into aging (18 months) and evaluated for overall and tissue-specific oxygen consumption to determine whether metabolic processes in the brain and other target organs show altered function in late life based on embryonic PAH toxicity. BAP reduced whole animal oxygen consumption, and overall reductions in total basal, mitochondrial basal, and mitochondrial maximum respiration in target organs, including the brain, liver and heart. The present data show that embryonic BAP exposure can lead to neurobehavioral impairment across the life-span, but that these long-term risks differentially emerge or attenuate as development progresses.Item Open Access Epigenetic alterations in cytochrome P450 oxidoreductase (Por) in sperm of rats exposed to tetrahydrocannabinol (THC).(Scientific reports, 2020-07-23) Acharya, Kelly S; Schrott, Rose; Grenier, Carole; Huang, Zhiqing; Holloway, Zade; Hawkey, Andrew; Levin, Edward D; Murphy, Susan KAs marijuana legalization is increasing, research regarding possible long-term risks for users and their offspring is needed. Little data exists on effects of paternal tetrahydrocannabinol (THC) exposure prior to reproduction. This study determined if chronic THC exposure alters sperm DNA methylation (DNAm) and if such effects are intergenerationally transmitted. Adult male rats underwent oral gavage with THC or vehicle control. Differentially methylated (DM) loci in motile sperm were identified using reduced representation bisulfite sequencing (RRBS). Another cohort was injected with vehicle or THC, and sperm DNAm was analyzed. Finally, THC-exposed and control adult male rats were mated with THC-naïve females. DNAm levels of target genes in brain tissues of the offspring were determined by pyrosequencing. RRBS identified 2,940 DM CpGs mapping to 627 genes. Significant hypermethylation was confirmed (p < 0.05) following oral THC administration for cytochrome P450 oxidoreductase (Por), involved in toxin processing and disorders of sexual development. Por hypermethylation was not observed after THC injection or in the subsequent generation. These results support that THC alters DNAm in sperm and that route of exposure can have differential effects. Although we did not observe evidence of intergenerational transmission of the DNAm change, larger studies are required to definitively exclude this possibility.Item Open Access Gestational and perinatal exposure to diazinon causes long-lasting neurobehavioral consequences in the rat.(Toxicology, 2020-01) Hawkey, Andrew; Pippen, Erica; White, Hannah; Kim, Joseph; Greengrove, Eva; Kenou, Bruny; Holloway, Zade; Levin, Edward DDiazinon is a widely-used organophosphate pesticide. Pulsatile exposure to diazinon during neonatal development has previously been shown cause long-term neurobehavioral impairments in rats. However, the effects of chronic low concentration exposures during perinatal development remain unclear. This experiment evaluated such effects in Sprague-Dawley rats by implanting osmotic pumps in breeder females prior to conception (N = 13-15 litters per condition) which then delivered chronic, zero order kinetic low-level infusions of 0, 114 or 228 ug/day of diazinon throughout pregnancy. One male and one female from each litter was assessed with a battery of behavioral tests that continued from four weeks of age into adulthood. Litter was used as the unit of variance for the analysis of variance test of significance, with sex as a within litter factor. Diazinon treatment condition was the between subjects factor and time or sessions were repeated measures. Chronic diazinon exposure from pre-mating until the neonatal period caused a significant (p < 0.05) increase in percent of time spent on the open arms of the elevated plus maze, an index of risk-taking behavior. Gestational and lactational diazinon exposure also caused a significant (p < 0.05) degree of hyperactivity in the Figure-8 apparatus during adolescence, specifically affecting the early part of the hour-long test session. This effect had dissipated by the time the rats reached adulthood. Diazinon exposure also caused a significant impairment in novel object recognition, a test of cognitive function. Offspring exposed to 228 ug/day diazinon (p < 0.05) showed significantly less preference for the novel vs. familiar object than controls during the first five minutes of the novel object recognition test.Item Open Access Measuring attention in rats with a visual signal detection task: Signal intensity vs. signal duration.(Pharmacology, biochemistry, and behavior, 2020-12) Holloway, Zade; Koburov, Reese; Hawkey, Andrew; Levin, Edward DMeasurement of attentional performance in animal behavioral research allows us to investigate neural mechanisms underlying attentional processes and translate results to better understand human attentional function, dysfunction and drug treatments to reverse dysfunction. One useful method to measure attention in experimental animal studies is to use an operant visual signal detection paradigm, consisting of two levers and the rapid flashing of a cue lamp to signal a reward. In this study, we tested the relative sensitivity of this task when using different variants of the stimulus signal, varying brightness or duration of the light cue. To investigate roles of different neural systems underlying attentional processes, we assessed the sensitivity of attentional performance with these two different cue variations with blockade of muscarinic acetylcholine and NMDA glutamate receptors with scopolamine and MK-801 (dizocilpine). Operant signal detection was tested using a signal light that varied in intensity (0.027, 0.269, 1.22 lx) of the signal light or in a paradigm which varied the duration (0.5 s, 1 s, 2 s) of the signal light. Both methods of assessing attention showed construct validity for producing gradients of accuracy for signal detection; the dimmest cue led to less accurate responding compared to the brighter cues, and the shortest duration led to less accuracy compared to the longer durations. However, the tests differed in their sensitivity to pharmacological disruption. With the duration test, the high dose of MK-801 along with co-exposure of scopolamine and MK-801 caused a significant reduction of hit and rejection accuracy. Conversely, the intensity variation test did not show significant differences as a function of drug exposures. These data suggest that changes in signal duration, rather than signal intensity, during operant signal detection may have higher sensitivity to detecting drug effects and be a more useful technique for examining pharmacological interventions on attentional behavior and performance.Item Open Access Neurobehavioral anomalies in zebrafish after sequential exposures to DDT and chlorpyrifos in adulthood: Do multiple exposures interact?(Neurotoxicology and teratology, 2021-09) Hawkey, Andrew B; Holloway, Zade; Dean, Cassandra; Koburov, Reese; Slotkin, Theodore A; Seidler, Frederic J; Levin, Edward DA sequence of different classes of synthetic insecticides have been used over the past 70 years. Over this period, the widely-used organochlorines were eventually replaced by organophosphates, with dichlorodiphenyltrichloroethane (DDT) and chlorpyrifos (CPF) as the principal prototypes. Considerable research has characterized the risks of DDT and CPF individually, but little is known about the toxicology of transitioning from one class of insecticides to another, as has been commonplace for agricultural and pest control workers. This study used adult zebrafish to investigate neurobehavioral toxicity following 5-week chronic exposure to either DDT or CPF, to or their sequential exposure (DDT for 5 weeks followed by CPF for 5 weeks). At the end of the exposure period, a subset of fish were analyzed for brain cholinesterase activity. Behavioral effects were initially assessed one week following the end of the CPF exposure and again at 14 months of age using a behavioral test battery covering sensorimotor responses, anxiety-like functions, predator avoidance and social attraction. Adult insecticide exposures, individually or sequentially, were found to modulate multiple behavioral features, including startle responsivity, social approach, predator avoidance, locomotor activity and novel location recognition and avoidance. Locomotor activity and startle responsivity were each impacted to a greater degree by the sequential exposures than by individual compounds, with the latter being pronounced at the early (1-week post exposure) time point, but not 3-4 months later in aging. Social approach responses were similarly impaired by the sequential exposure as by CPF-alone at the aging time point. Fleeing responses in the predator test showed flee-enhancing effects of both compounds individually versus controls, and no additive impact of the two following sequential exposure. Each compound was also associated with changes in recognition or avoidance patterns in a novel place recognition task in late adulthood, but sequential exposures did not enhance these phenotypes. The potential for chemical x chemical interactions did not appear related to changes in CPF metabolism to the active oxon, as prior DDT exposure did not affect the cholinesterase inhibition resulting from CPF. This study shows that the effects of chronic adult insecticide exposures may be relevant to behavioral health initially and much later in life, and that the effects of sequential exposures may be unpredictable based on their constituent exposures.Item Open Access Persistent neurobehavioral and neurochemical anomalies in middle-aged rats after maternal diazinon exposure.(Toxicology, 2022-04) Hawkey, Andrew B; Pippen, Erica; Kenou, Bruny; Holloway, Zade; Slotkin, Theodore A; Seidler, Frederic J; Levin, Edward DDiazinon is an organophosphate pesticide that has a history of wide use. Developmental exposures to organophosphates lead to neurobehavioral changes that emerge early in life and can persist into adulthood. However, preclinical studies have generally evaluated changes through young adulthood, whereas the persistence or progression of deficits into middle age remain poorly understood. The current study evaluated the effects of maternal diazinon exposure on behavior and neurochemistry in middle age, at 1 year postpartum, comparing the results to our previous studies of outcomes at adolescence and in young adulthood (4 months of age) (Hawkey 2020). Female rats received 0, 0.5 or 1.0 mg/kg/day of diazinon via osmotic minipump throughout gestation and into the postpartum period. The offspring were tested on a battery of locomotor, affective, and cognitive tests at young adulthood and during middle age. Some of the neurobehavioral consequences of developmental DZN seen during adolescence and young adulthood faded with continued aging, whereas other neurobehavioral effects emerged with aging. At middle age, the rats showed few locomotor effects, in contrast to the locomotor hyperactivity that had been observed in adolescence. Notably, though, DZN exposure during development impaired reference memory performance in middle-aged males, an effect that had not been seen in the younger animals. Likewise, middle-aged females exposed to DZN showed deficient attentional accuracy, an effect not seen in young adults. Across adulthood, the continued potential for behavioral defects was associated with altered dopaminergic function, characterized by enhanced dopamine utilization that was regionally-selective (striatum but not frontal/parietal cortex). This study shows that the neurobehavioral impairments from maternal low dose exposure to diazinon not only persist, but may continue to evolve as animals enter middle age.Item Open Access Self-administration by female rats of low doses of nicotine alone vs. nicotine in tobacco smoke extract.(Drug and alcohol dependence, 2021-11) Levin, Edward D; Wells, Corinne; Pace, Caroline; Abass, Grant; Hawkey, Andrew; Holloway, Zade; Rezvani, Amir H; Rose, Jed EBackground
Nicotine has reinforcing effects, but there are thousands of other compounds in tobacco, some of which might interact with nicotine reinforcement.Aims
This rat study was conducted to determine if nicotine self-administration is altered by co-administration of the complex mixture of compounds in tobacco smoke extract (TSE).Methods
Female Sprague-Dawley rats were tested for self-administration of low doses of nicotine (3 or 10 µg/kg/infusion) at three different rates of reinforcement (FR1, FR3 and FR5) over three weeks either alone or together with the complex mixture of tobacco smoke extract (TSE).Results
Rats self-administering 3 µg/kg/infusion of nicotine alone showed a rapid initiation on an FR1 schedule, but declined with FR5. Rats self-administering nicotine in TSE acquired self-administration more slowly, but increased responding over the course of the study. With 10 µg/kg/infusion rats self-administered significantly more nicotine alone than rats self-administering the same nicotine dose in TSE. Rats self-administering nicotine alone took significantly more infusions with the 10 than the 3 µg/kg/infusion dose, whereas rats self-administering nicotine in TSE did not. Nicotine in TSE led to a significantly greater locomotor hyperactivity at a dose of 0.1 mg/kg compared to rats that received nicotine alone. Rats self-administering nicotine alone had significantly more responding on the active vs. inactive lever, but rats self-administering the same nicotine doses in TSE did not.Conclusions
Self-administration of nicotine in a purer form appears to be more clearly discriminated and dose-related than nicotine self-administered in the complex mixture of TSE.Item Open Access Sperm DNA methylation alterations from cannabis extract exposure are evident in offspring.(Epigenetics & chromatin, 2022-09) Schrott, Rose; Modliszewski, Jennifer L; Hawkey, Andrew B; Grenier, Carole; Holloway, Zade; Evans, Janequia; Pippen, Erica; Corcoran, David L; Levin, Edward D; Murphy, Susan KBackground
Cannabis legalization is expanding and men are the predominant users. We have limited knowledge about how cannabis impacts sperm and whether the effects are heritable.Results
Whole genome bisulfite sequencing (WGBS) data were generated for sperm of rats exposed to: (1) cannabis extract (CE) for 28 days, then 56 days of vehicle only (~ one spermatogenic cycle); (2) vehicle for 56 days, then 28 days of CE; or (3) vehicle only. Males were then mated with drug-naïve females to produce F1 offspring from which heart, brain, and sperm tissues underwent analyses. There were 3321 nominally significant differentially methylated CpGs in F0 sperm identified via WGBS with select methylation changes validated via bisulfite pyrosequencing. Significant methylation changes validated in F0 sperm of the exposed males at the gene 2-Phosphoxylose Phosphatase 1 (Pxylp1) were also detectable in their F1 sperm but not in controls. Changes validated in exposed F0 sperm at Metastasis Suppressor 1-Like Protein (Mtss1l) were also present in F1 hippocampal and nucleus accumbens (NAc) of the exposed group compared to controls. For Mtss1l, a significant sex-specific relationship between DNA methylation and gene expression was demonstrated in the F1 NAc. Phenotypically, rats born to CSE-exposed fathers exhibited significant cardiomegaly relative to those born to control fathers.Conclusions
This is the first characterization of the effect of cannabis exposure on the entirety of the rat sperm methylome. We identified CE-associated methylation changes across the sperm methylome, some of which persisted despite a "washout" period. Select methylation changes validated via bisulfite pyrosequencing, and genes associated with methylation changes were involved in early developmental processes. Preconception CE exposure is associated with detectable changes in offspring DNA methylation that are functionally related to changes in gene expression and cardiomegaly. These results support that paternal preconception exposure to cannabis can influence offspring outcomes.Item Open Access The use of tocofersolan as a rescue agent in larval zebrafish exposed to benzo[a]pyrene in early development.(Neurotoxicology, 2021-09) Holloway, Zade; Hawkey, Andrew; Asrat, Helina; Boinapally, Nidhi; Levin, Edward DPolycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants created by incomplete combustion. Benzo(a)pyrene (BaP), the prototypic PAH, is known to exert toxicity through oxidative stress which is thought to occur through inhibition of antioxidant scavenging systems. The use of agents that reduce oxidative stress may be a valuable route for ameliorating the adverse effects of PAHs on neural development and behavior. This study was conducted to determine if tocofersolan (a synthetic water-soluble analog of vitamin E) supplementation can prevent or reduce neurobehavioral deficits in zebrafish embryos exposed to BaP during early development. Newly hatched zebrafish were assessed on locomotor activity and light responsivity. Zebrafish embryos were exposed to vehicle (DMSO), tocofersolan (0.3 μM-3 μM), and/or BaP (5 μM) from 5-120 hours post-fertilization. This concentration range was below the threshold for producing overt dysmorphogenesis or decreased survival. One day after the end of exposure the larval fish were tested for locomotor activity under alternating light and dark 10 min periods, BaP (5 μM) was found to cause locomotor hypoactivity in larval fish. Co-exposure of tocofersolan (1 μM) restored control-like locomotor function. Based on the findings of this study, this model can be expanded to assess the outcome of vitamin E supplementation on other potential environmental neurotoxicants, and lead to determination if this rescue persists into adulthood.