Browsing by Author "Hong, Han"
- Results Per Page
- Sort Options
Item Open Access Essays in Industrial Organization and Econometrics(2010) Blevins, Jason RyanThis dissertation consists of three chapters relating to
identification and inference in dynamic microeconometric models
including dynamic discrete games with many players, dynamic games with
discrete and continuous choices, and semiparametric binary choice and
duration panel data models.
The first chapter provides a framework for estimating large-scale
dynamic discrete choice models (both single- and multi-agent models)
in continuous time. The advantage of working in continuous time is
that state changes occur sequentially, rather than simultaneously,
avoiding a substantial curse of dimensionality that arises in
multi-agent settings. Eliminating this computational bottleneck is
the key to providing a seamless link between estimating the model and
performing post-estimation counterfactuals. While recently developed
two-step estimation techniques have made it possible to estimate
large-scale problems, solving for equilibria remains computationally
challenging. In many cases, the models that applied researchers
estimate do not match the models that are then used to perform
counterfactuals. By modeling decisions in continuous time, we are able
to take advantage of the recent advances in estimation while
preserving a tight link between estimation and policy experiments. We
also consider estimation in situations with imperfectly sampled data,
such as when we do not observe the decision not to move, or when data
is aggregated over time, such as when only discrete-time data are
available at regularly spaced intervals. We illustrate the power of
our framework using several large-scale Monte Carlo experiments.
The second chapter considers semiparametric panel data binary choice
and duration models with fixed effects. Such models are point
identified when at least one regressor has full support on the real
line. It is common in practice, however, to have only discrete or
continuous, but possibly bounded, regressors. We focus on
identification, estimation, and inference for the identified set in
such cases, when the parameters of interest may only be partially
identified. We develop a set of general results for
criterion-function-based estimation and inference in partially
identified models which can be applied to both regular and irregular
models. We apply our general results first to a fixed effects binary
choice panel data model where we obtain a sharp characterization of
the identified set and propose a consistent set estimator,
establishing its rate of convergence under different conditions.
Rates arbitrarily close to n-1/3 are
possible when a continuous, but possibly bounded, regressor is
present. When all regressors are discrete the estimates converge
arbitrarily fast to the identified set. We also propose a
subsampling-based procedure for constructing confidence regions in the
models we consider. Finally, we carry out a series of Monte Carlo
experiments to illustrate and evaluate the proposed procedures. We
also consider extensions to other fixed effects panel data models such
as binary choice models with lagged dependent variables and duration
models.
The third chapter considers nonparametric identification of dynamic
games of incomplete information in which players make both discrete
and continuous choices. Such models are commonly used in applied work
in industrial organization where, for example, firms make discrete
entry and exit decisions followed by continuous investment decisions.
We first review existing identification results for single agent
dynamic discrete choice models before turning to single-agent models
with an additional continuous choice variable and finally to
multi-agent models with both discrete and continuous choices. We
provide conditions for nonparametric identification of the utility
function in both cases.
Item Open Access Essays on Empirical Analysis of Continuous-Time Models of Industrial Organization(2008-04-08) Nekipelov, DenisThe dissertation consists of three essays. The first essay describes and estimates the model of bidding on eBay. Internet auctions (such as eBay) differ from the traditional auction format in that participants 1) typically face a choice over several simultaneous auctions and 2) often have limited information about rival bidders. Since existing economic models do not account for these features of the bidding environment, it should not be surprising that even casual empiricism reveals a sharp discrepancy between the predictions of existing theory and the actual behavior of bidders. In this paper, I show that the presence of multiple, contemporaneous auctions for similar items coupled with uncertainty regarding rival entry can explain both features. I analyze these features in a continuous-time stochastic auction model with endogenous entry, in which bidder types are differentiated by their initial information regarding the entry process. Empirical estimates using eBay auctions of pop-music CDs confirm my theoretical prediction that the rate of entry depends on price. I then test my model against alternative explanations of observed bidding behavior using a detailed field experiment.
The second essay is on empirical analysis of executive compensation in the continuous-time environment. In this essay, I develop a methodology for the identification and non-parametric estimation of a continuous-time principal-agent model. My framework extends the existing literature on optimal dynamic contracts by allowing for the presence of unobserved state variables. To accommodate such heterogeneity, I develop an estimation method based on numerically solving for the optimal non-linear manager's response to the restrictions of the contract. To demonstrate this feature, I apply my methodology to executive contracts from the retail apparel industry.
The third essay provides a tractable methodology for the construction and structural estimation of continuous time dynamic models. The specific class of models covered by my framework includes competitive dynamic games where there are no direct spillovers between objective functions of players. I develop an estimation methodology based on the properties of the equilibrium of the model. The methodology that I design can be applied to welfare and revenue analysis of large dynamic models. As an example, I compute the revenue and welfare gains for a counter-factual exercise in which the eBay auction website changes the format of its auctions from second-price to a flexible ending.