Browsing by Author "Hoyo, Catherine"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Genetic variants in IGF-I, IGF-II, IGFBP-3, and adiponectin genes and colon cancer risk in African Americans and Whites.(Cancer Causes Control, 2012-07) Keku, Temitope O; Vidal, Adriana; Oliver, Shannon; Hoyo, Catherine; Hall, Ingrid J; Omofoye, Oluwaseun; McDoom, Maya; Worley, Kendra; Galanko, Joseph; Sandler, Robert S; Millikan, RobertPURPOSE: Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)( n ) repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor-binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. METHODS: Participants were African Americans (231 cases and 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5'-exonuclease (Taqman) assay. The IGF-I (CA)(n) repeat was assayed by PCR and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated by logistic regression. RESULTS: The IGF-I (CA)( 19 ) repeat was higher in White controls (50 %) than African American controls (31 %). Whites homozygous for the IGF-I (CA)(19) repeat had a nearly twofold increase in risk of colon cancer (OR = 1.77; 95 % CI = 1.15-2.73), but not African Americans (OR = 0.73, 95 % CI 0.50-1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR = 0.49, 95 % CI 0.28-0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p-trend <0.05). CONCLUSIONS: These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans.Item Open Access Male obesity impacts DNA methylation reprogramming in sperm.(Clinical epigenetics, 2021-01-25) Keyhan, Sanaz; Burke, Emily; Schrott, Rose; Huang, Zhiqing; Grenier, Carole; Price, Thomas; Raburn, Doug; Corcoran, David L; Soubry, Adelheid; Hoyo, Catherine; Murphy, Susan KBackground
Male obesity has profound effects on morbidity and mortality, but relatively little is known about the impact of obesity on gametes and the potential for adverse effects of male obesity to be passed to the next generation. DNA methylation contributes to gene regulation and is erased and re-established during gametogenesis. Throughout post-pubertal spermatogenesis, there are continual needs to both maintain established methylation and complete DNA methylation programming, even during epididymal maturation. This dynamic epigenetic landscape may confer increased vulnerability to environmental influences, including the obesogenic environment, that could disrupt reprogramming fidelity. Here we conducted an exploratory analysis that showed that overweight/obesity (n = 20) is associated with differences in mature spermatozoa DNA methylation profiles relative to controls with normal BMI (n = 47).Results
We identified 3264 CpG sites in human sperm that are significantly associated with BMI (p < 0.05) using Infinium HumanMethylation450 BeadChips. These CpG sites were significantly overrepresented among genes involved in transcriptional regulation and misregulation in cancer, nervous system development, and stem cell pluripotency. Analysis of individual sperm using bisulfite sequencing of cloned alleles revealed that the methylation differences are present in a subset of sperm rather than being randomly distributed across all sperm.Conclusions
Male obesity is associated with altered sperm DNA methylation profiles that appear to affect reprogramming fidelity in a subset of sperm, suggestive of an influence on the spermatogonia. Further work is required to determine the potential heritability of these DNA methylation alterations. If heritable, these changes have the potential to impede normal development.