Browsing by Author "Huang, Z"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring(International Journal of Obesity, 2013) Vidal, AC; Murphy, SK; Murtha, AP; Schildkraut, JM; Soubry, A; Huang, Z; Neelon, SEB; Fuemmeler, B; Iversen, E; Wang, F; Kurtzberg, J; Jirtle, RL; Hoyo, CObjectives: Low birth weight (LBW) has been associated with common adult-onset chronic diseases, including obesity, cardiovascular disease, type II diabetes and some cancers. The etiology of LBW is multi-factorial. However, recent evidence suggests exposure to antibiotics may also increase the risk of LBW. The mechanisms underlying this association are unknown, although epigenetic mechanisms are hypothesized. In this study, we evaluated the association between maternal antibiotic use and LBW and examined the potential role of altered DNA methylation that controls growth regulatory imprinted genes in these associations. Methods: Between 2009-2011, 397 pregnant women were enrolled and followed until delivery. Prenatal antibiotic use was ascertained through maternal self-report. Imprinted genes methylation levels were measured at differentially methylated regions (DMRs) using bisulfite pyrosequencing. Generalized linear models were used to examine associations among antibiotic use, birth weight and DMR methylation fractions. Results: After adjusting for infant gender, race/ethnicity, maternal body mass index, delivery route, gestational weight gain, gestational age at delivery, folic acid intake, physical activity, maternal smoking and parity, antibiotic use during pregnancy was associated with 138 g lower birth weight compared with non-antibiotic use (β-coefficient=-132.99, s.e.=50.70, P=0.008). These associations were strongest in newborns of women who reported antibiotic use other than penicillins (β-coefficient=-135.57, s.e.=57.38, P=0.02). Methylation at five DMRs, IGF2 (P=0.05), H19 (P=0.15), PLAGL1 (P=0.01), MEG3 (P=0.006) and PEG3 (P=0.08), was associated with maternal antibiotic use; among these, only methylation at the PLAGL1 DMR was also associated with birth weight. Conclusion: We report an inverse association between in utero exposure to antibiotics and lower infant birth weight and provide the first empirical evidence supporting imprinted gene plasticity in these associations. © 2013 Macmillan Publishers Limited.Item Open Access Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring.(International journal of obesity (2005), 2013-07) Vidal, AC; Murphy, SK; Murtha, AP; Schildkraut, JM; Soubry, A; Huang, Z; Neelon, SEB; Fuemmeler, B; Iversen, E; Wang, F; Kurtzberg, J; Jirtle, RL; Hoyo, CObjectives
Low birth weight (LBW) has been associated with common adult-onset chronic diseases, including obesity, cardiovascular disease, type II diabetes and some cancers. The etiology of LBW is multi-factorial. However, recent evidence suggests exposure to antibiotics may also increase the risk of LBW. The mechanisms underlying this association are unknown, although epigenetic mechanisms are hypothesized. In this study, we evaluated the association between maternal antibiotic use and LBW and examined the potential role of altered DNA methylation that controls growth regulatory imprinted genes in these associations.Methods
Between 2009-2011, 397 pregnant women were enrolled and followed until delivery. Prenatal antibiotic use was ascertained through maternal self-report. Imprinted genes methylation levels were measured at differentially methylated regions (DMRs) using bisulfite pyrosequencing. Generalized linear models were used to examine associations among antibiotic use, birth weight and DMR methylation fractions.Results
After adjusting for infant gender, race/ethnicity, maternal body mass index, delivery route, gestational weight gain, gestational age at delivery, folic acid intake, physical activity, maternal smoking and parity, antibiotic use during pregnancy was associated with 138 g lower birth weight compared with non-antibiotic use (β-coefficient=-132.99, s.e.=50.70, P=0.008). These associations were strongest in newborns of women who reported antibiotic use other than penicillins (β-coefficient=-135.57, s.e.=57.38, P=0.02). Methylation at five DMRs, IGF2 (P=0.05), H19 (P=0.15), PLAGL1 (P=0.01), MEG3 (P=0.006) and PEG3 (P=0.08), was associated with maternal antibiotic use; among these, only methylation at the PLAGL1 DMR was also associated with birth weight.Conclusion
We report an inverse association between in utero exposure to antibiotics and lower infant birth weight and provide the first empirical evidence supporting imprinted gene plasticity in these associations.Item Open Access Decoupling Loads for Nano-Instruction Set Computers(Proceedings - 2016 43rd International Symposium on Computer Architecture, ISCA 2016, 2016-08-24) Hilton, AD; Lee, BC; Huang, Z© 2016 IEEE.We propose an ISA extension that decouples the data access and register write operations in a load instruction. We describe system and hardware support for decoupled loads. Furthermore, we show how compilers can generate better static instruction schedules by hoisting a decoupled load's data access above may-alias stores and branches. We find that decoupled loads improve performance with geometric mean speedups of 8.4%.Item Open Access Depression in pregnancy, infant birth weight and DNA methylation of imprint regulatory elements.(Epigenetics : official journal of the DNA Methylation Society, 2012-07) Liu, Y; Murphy, SK; Murtha, AP; Fuemmeler, BF; Schildkraut, J; Huang, Z; Overcash, F; Kurtzberg, J; Jirtle, R; Iversen, ES; Forman, MR; Hoyo, CDepressed mood in pregnancy has been linked to low birth weight (LBW, 4,500 g) infants had 5.9% higher methylation at the PLAGL1 DMR compared with normal birth weight infants. Our findings confirm that severe maternal depressed mood in pregnancy is associated with LBW, and that MEG3 and IGF2 plasticity may play important roles.Item Open Access Epigenetic alterations in cytochrome P450 oxidoreductase (Por) in sperm of rats exposed to tetrahydrocannabinol (THC)(Scientific Reports, 2020-12-01) Acharya, KS; Schrott, R; Grenier, C; Huang, Z; Holloway, Z; Hawkey, A; Levin, ED; Murphy, SKAs marijuana legalization is increasing, research regarding possible long-term risks for users and their offspring is needed. Little data exists on effects of paternal tetrahydrocannabinol (THC) exposure prior to reproduction. This study determined if chronic THC exposure alters sperm DNA methylation (DNAm) and if such effects are intergenerationally transmitted. Adult male rats underwent oral gavage with THC or vehicle control. Differentially methylated (DM) loci in motile sperm were identified using reduced representation bisulfite sequencing (RRBS). Another cohort was injected with vehicle or THC, and sperm DNAm was analyzed. Finally, THC-exposed and control adult male rats were mated with THC-naïve females. DNAm levels of target genes in brain tissues of the offspring were determined by pyrosequencing. RRBS identified 2,940 DM CpGs mapping to 627 genes. Significant hypermethylation was confirmed (p < 0.05) following oral THC administration for cytochrome P450 oxidoreductase (Por), involved in toxin processing and disorders of sexual development. Por hypermethylation was not observed after THC injection or in the subsequent generation. These results support that THC alters DNAm in sperm and that route of exposure can have differential effects. Although we did not observe evidence of intergenerational transmission of the DNAm change, larger studies are required to definitively exclude this possibility.Item Open Access Newborns of obese parents have altered DNA methylation patterns at imprinted genes(International Journal of Obesity, 2015-04-09) Soubry, A; Murphy, SK; Wang, F; Huang, Z; Vidal, AC; Fuemmeler, BF; Kurtzberg, J; Murtha, A; Jirtle, RL; Schildkraut, JM; Hoyo, CBackground:Several epidemiologic studies have demonstrated associations between periconceptional environmental exposures and health status of the offspring in later life. Although these environmentally related effects have been attributed to epigenetic changes, such as DNA methylation shifts at imprinted genes, little is known about the potential effects of maternal and paternal preconceptional overnutrition or obesity.Objective:We examined parental preconceptional obesity in relation to DNA methylation profiles at multiple human imprinted genes important in normal growth and development, such as: maternally expressed gene 3 (MEG3), mesoderm-specific transcript (MEST), paternally expressed gene 3 (PEG3), pleiomorphic adenoma gene-like 1 (PLAGL1), epsilon sarcoglycan and paternally expressed gene 10 (SGCE/PEG10) and neuronatin (NNAT).Methods:We measured methylation percentages at the differentially methylated regions (DMRs) by bisulfite pyrosequencing in DNA extracted from umbilical cord blood leukocytes of 92 newborns. Preconceptional obesity, defined as BMI ≥30 kg m -2, was ascertained through standardized questionnaires.Results:After adjusting for potential confounders and cluster effects, paternal obesity was significantly associated with lower methylation levels at the MEST (β=-2.57; s.e.=0.95; P=0.008), PEG3 (β=-1.71; s.e.=0.61; P=0.005) and NNAT (β=-3.59; s.e.=1.76; P=0.04) DMRs. Changes related to maternal obesity detected at other loci were as follows: β-coefficient was +2.58 (s.e.=1.00; P=0.01) at the PLAGL1 DMR and -3.42 (s.e.=1.69; P=0.04) at the MEG3 DMR.Conclusion:We found altered methylation outcomes at multiple imprint regulatory regions in children born to obese parents, compared with children born to non-obese parents. In spite of the small sample size, our data suggest a preconceptional influence of parental life-style or overnutrition on the (re)programming of imprint marks during gametogenesis and early development. More specifically, the significant and independent association between paternal obesity and the offspring's methylation status suggests the susceptibility of the developing sperm for environmental insults. The acquired imprint instability may be carried onto the next generation and increase the risk for chronic diseases in adulthood.Item Open Access Newborns of obese parents have altered DNA methylation patterns at imprinted genes.(International journal of obesity (2005), 2015-04) Soubry, A; Murphy, SK; Wang, F; Huang, Z; Vidal, AC; Fuemmeler, BF; Kurtzberg, J; Murtha, A; Jirtle, RL; Schildkraut, JM; Hoyo, CSeveral epidemiologic studies have demonstrated associations between periconceptional environmental exposures and health status of the offspring in later life. Although these environmentally related effects have been attributed to epigenetic changes, such as DNA methylation shifts at imprinted genes, little is known about the potential effects of maternal and paternal preconceptional overnutrition or obesity.We examined parental preconceptional obesity in relation to DNA methylation profiles at multiple human imprinted genes important in normal growth and development, such as: maternally expressed gene 3 (MEG3), mesoderm-specific transcript (MEST), paternally expressed gene 3 (PEG3), pleiomorphic adenoma gene-like 1 (PLAGL1), epsilon sarcoglycan and paternally expressed gene 10 (SGCE/PEG10) and neuronatin (NNAT).We measured methylation percentages at the differentially methylated regions (DMRs) by bisulfite pyrosequencing in DNA extracted from umbilical cord blood leukocytes of 92 newborns. Preconceptional obesity, defined as BMI ⩾30 kg m(-2), was ascertained through standardized questionnaires.After adjusting for potential confounders and cluster effects, paternal obesity was significantly associated with lower methylation levels at the MEST (β=-2.57; s.e.=0.95; P=0.008), PEG3 (β=-1.71; s.e.=0.61; P=0.005) and NNAT (β=-3.59; s.e.=1.76; P=0.04) DMRs. Changes related to maternal obesity detected at other loci were as follows: β-coefficient was +2.58 (s.e.=1.00; P=0.01) at the PLAGL1 DMR and -3.42 (s.e.=1.69; P=0.04) at the MEG3 DMR.We found altered methylation outcomes at multiple imprint regulatory regions in children born to obese parents, compared with children born to non-obese parents. In spite of the small sample size, our data suggest a preconceptional influence of parental life-style or overnutrition on the (re)programming of imprint marks during gametogenesis and early development. More specifically, the significant and independent association between paternal obesity and the offspring's methylation status suggests the susceptibility of the developing sperm for environmental insults. The acquired imprint instability may be carried onto the next generation and increase the risk for chronic diseases in adulthood.Item Open Access The effects of depression and use of antidepressive medicines during pregnancy on the methylation status of the IGF2 imprinted control regions in the offspring.(Clinical epigenetics, 2011-10-26) Soubry, A; Murphy, Sk; Huang, Z; Murtha, A; Schildkraut, Jm; Jirtle, Rl; Wang, F; Kurtzberg, J; Demark-Wahnefried, W; Forman, Mr; Hoyo, CIn utero exposures to environmental factors may result in persistent epigenetic modifications affecting normal development and susceptibility to chronic diseases in later life. We explored the relationship between exposure of the growing fetus to maternal depression or antidepressants and DNA methylation at two differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene. Aberrant DNA methylation at the IGF2 and neighboring H19 DMRs has been associated with deregulated IGF2 expression, childhood cancers and several chronic diseases during adulthood. Our study population is comprised of pregnant mothers and their newborns (n = 436), as part of the Newborn Epigenetics Study (NEST). A standardized questionnaire was completed and medical record data were abstracted to ascertain maternal depression and antidepressive drug use. DMR methylation levels in umbilical cord blood leukocytes were quantified using pyrosequencing. From the 436 newborns, laboratory data were obtained for 356 individuals at the IGF2 DMRs, and for 411 individuals at the H19 DMRs; about half of each group was African American or Caucasian. While overall no association between depression and methylation profiles was found, we observed a significant hypermethylation of the H19 DMRs in newborns of African American (n = 177) but not Caucasian (n = 168) mothers who reported the use of antidepressive drugs during pregnancy (β = +6.89, p = 0.01). Of note, our data reveal a race-independent association between smoking during pregnancy and methylation at the IGF2 DMR (+3.05%, p = 0.01). In conclusion, our findings suggest a race-dependent response related to maternal use of antidepressants at one of the IGF2 DMRs in the offspring.Item Open Access The Global Need for Easy and Valid Assessment Tools for Orofacial Pain.(Journal of dental research, 2022-12) Lobbezoo, F; Aarab, G; Kapos, FP; Dayo, AF; Huang, Z; Koutris, M; Peres, MA; Thymi, M; Häggman-Henrikson, BThe World Health Organization recently adopted a historic resolution (WHA74.5) on the urgent need for global oral health improvement. This resolution is particularly relevant in the perspective of the high prevalence of untreated oral diseases. However, one important aspect has been mentioned only in passing, namely that poor oral health often leads to orofacial pain, which is the most common reason for emergency dental visits worldwide. Therefore, an evidence-based decision-making process on oral health should include data related to orofacial pain complaints. To that end, the availability of reliable and valid assessment tools of orofacial pain and related treatment outcomes is essential. INfORM (International Network for Orofacial Pain and Related Disorders Methodology) of the International Association for Dental Research has been one of the driving forces behind the development and implementation of comprehensive sets of tools for such assessments. However, as a prerequisite for the desired global implementation, reliable and valid tools that are also brief, easy to translate, and culturally adaptable need to be further developed and tested. Some of the groundwork to facilitate this process has already been carried out. In addition, a working group within INfORM has developed a short clinical assessment tool for orofacial pain diagnostics that is near completion and will soon be ready for dissemination. Ultimately, reliable and valid orofacial pain assessment is a necessary step toward the development and implementation of appropriate "best buy" interventions that address this major driver of need for oral health care worldwide.