Browsing by Author "Hulette, Christine M"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Somatic uniparental disomy of Chromosome 16p in hemimegalencephaly.(Cold Spring Harbor molecular case studies, 2017-09) Griffin, Nicole G; Cronin, Kenneth D; Walley, Nicole M; Hulette, Christine M; Grant, Gerald A; Mikati, Mohamad A; LaBreche, Heather G; Rehder, Catherine W; Allen, Andrew S; Crino, Peter B; Heinzen, Erin LHemimegalencephaly (HME) is a heterogeneous cortical malformation characterized by enlargement of one cerebral hemisphere. Somatic variants in mammalian target of rapamycin (mTOR) regulatory genes have been implicated in some HME cases; however, ∼70% have no identified genetic etiology. Here, we screened two HME patients to identify disease-causing somatic variants. DNA from leukocytes, buccal swabs, and surgically resected brain tissue from two HME patients were screened for somatic variants using genome-wide genotyping arrays or sequencing of the protein-coding regions of the genome. Functional studies were performed to evaluate the molecular consequences of candidate disease-causing variants. Both HME patients evaluated were found to have likely disease-causing variants in DNA extracted from brain tissue but not in buccal swab or leukocyte DNA, consistent with a somatic mutational mechanism. In the first case, a previously identified disease-causing somatic single nucleotide in MTOR was identified. In the second case, we detected an overrepresentation of the alleles inherited from the mother on Chromosome 16 in brain tissue DNA only, indicative of somatic uniparental disomy (UPD) of the p-arm of Chromosome 16. Using methylation analyses, an imprinted locus on 16p spanning ZNF597 was identified, which results in increased expression of ZNF597 mRNA and protein in the brain tissue of the second case. Enhanced mTOR signaling was observed in tissue specimens from both patients. We speculate that overexpression of maternally expressed ZNF597 led to aberrant hemispheric development in the patient with somatic UPD of Chromosome 16p possibly through modulation of mTOR signaling.Item Open Access Tissue-specific genetic control of splicing: implications for the study of complex traits.(PLoS Biol, 2008-12-23) Heinzen, Erin L; Ge, Dongliang; Cronin, Kenneth D; Maia, Jessica M; Shianna, Kevin V; Gabriel, Willow N; Welsh-Bohmer, Kathleen A; Hulette, Christine M; Denny, Thomas N; Goldstein, David BNumerous genome-wide screens for polymorphisms that influence gene expression have provided key insights into the genetic control of transcription. Despite this work, the relevance of specific polymorphisms to in vivo expression and splicing remains unclear. We carried out the first genome-wide screen, to our knowledge, for SNPs that associate with alternative splicing and gene expression in human primary cells, evaluating 93 autopsy-collected cortical brain tissue samples with no defined neuropsychiatric condition and 80 peripheral blood mononucleated cell samples collected from living healthy donors. We identified 23 high confidence associations with total expression and 80 with alternative splicing as reflected by expression levels of specific exons. Fewer than 50% of the implicated SNPs however show effects in both tissue types, reflecting strong evidence for distinct genetic control of splicing and expression in the two tissue types. The data generated here also suggest the possibility that splicing effects may be responsible for up to 13 out of 84 reported genome-wide significant associations with human traits. These results emphasize the importance of establishing a database of polymorphisms affecting splicing and expression in primary tissue types and suggest that splicing effects may be of more phenotypic significance than overall gene expression changes.