Browsing by Author "Ilkayeva, Olga"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate.(PLoS Genet, 2015-10) Keenan, Melissa M; Liu, Beiyu; Tang, Xiaohu; Wu, Jianli; Cyr, Derek; Stevens, Robert D; Ilkayeva, Olga; Huang, Zhiqing; Tollini, Laura A; Murphy, Susan K; Lucas, Joseph; Muoio, Deborah M; Kim, So Young; Chi, Jen-TsanIn order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future.Item Open Access APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease.(The Journal of clinical investigation, 2024-01) Datta, Somenath; Antonio, Brett M; Zahler, Nathan H; Theile, Jonathan W; Krafte, Doug; Zhang, Hengtao; Rosenberg, Paul B; Chaves, Alec B; Muoio, Deborah M; Zhang, Guofang; Silas, Daniel; Li, Guojie; Soldano, Karen; Nystrom, Sarah; Ferreira, Davis; Miller, Sara E; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga; Becker, Thomas C; Hohmeier, Hans-Ewald; Newgard, Christopher B; Olabisi, Opeyemi ATwo coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.Item Open Access Metabolic factors associated with incident fracture among older adults with type 2 diabetes mellitus: a nested case-control study.(Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 2023-07) Lee, Richard H; Bain, James; Muehlbauer, Michael; Ilkayeva, Olga; Pieper, Carl; Wixted, Doug; Colón-Emeric, CathleenOlder adults with type 2 diabetes mellitus have an increased risk of fracture despite a paradoxically higher average bone mineral density. This study identified additional markers of fracture risk in this at-risk population. Non-esterified fatty acids and the amino acids glutamine/glutamate and asparagine/aspartate were associated with incident fractures.Purpose
Type 2 diabetes mellitus (T2D) is associated with an increased risk of fracture despite a paradoxically higher bone mineral density. Additional markers of fracture risk are needed to identify at-risk individuals.Method
The MURDOCK study is an ongoing study, initiated in 2007, of residents in central North Carolina. At enrollment, participants completed health questionnaires and provided biospecimen samples. In this nested case-control analysis, incident fractures among adults with T2D, age ≥ 50 years, were identified by self-report and electronic medical record query. Fracture cases were matched 1:2 by age, gender, race/ethnicity, and BMI to those without incident fracture. Stored sera were analyzed for conventional metabolites and targeted metabolomics (amino acids and acylcarnitines). The association between incident fracture and metabolic profile was assessed using conditional logistic regression, controlled for multiple confounders including tobacco and alcohol use, medical comorbidities, and medications.Results
107 incident fractures were identified with 210 matched controls. Targeted metabolomics analysis included 2 amino acid factors, consisting of: 1) the branched chain amino acids, phenylalanine and tyrosine; and 2) glutamine/glutamate, asparagine/aspartate, arginine, and serine [E/QD/NRS]. After controlling for multiple risk factors, E/QD/NRS was significantly associated with incident fracture (OR 2.50, 95% CI: 1.36-4.63). Non-esterified fatty acids were associated with lower odds of fracture (OR 0.17, 95% CI: 0.03-0.87). There were no associations with fracture among other conventional metabolites, acylcarnitine factors, nor the other amino acid factors.Conclusion
Our results indicate novel biomarkers, and suggest potential mechanisms, of fracture risk among older adults with T2D.Item Open Access Metabolic profiling in Prader-Willi syndrome and nonsyndromic obesity: Sex differences and the role of growth hormone(Clinical Endocrinology, 2015-12-01) Irizarry, Krystal A; Bain, James; Butler, Merlin G; Ilkayeva, Olga; Muehlbauer, Michael; Haqq, Andrea M; Freemark, Michael© 2015 John Wiley & Sons Ltd.Objectives To identify metabolic factors controlling appetite and insulin sensitivity in PWS and assess effects of GH treatment. Methods We compared amino acids, fatty acids and acylcarnitines in GH-treated and untreated PWS children and obese and lean controls to identify biomarkers associated with ghrelin, peptide YY and markers of insulin sensitivity (adiponectin and HOMA-IR). Results Compared with obese controls (OC), children with PWS had fasting hyperghrelinaemia, hyperadiponectinaemia, hypoinsulinaemia and increased ghrelin/PYY. Hyperghrelinaemia, hyperadiponectinaemia and hypoinsulinaemia were more striking in PWS females than males, and decreases in BCAA were detected only in PWS females. GH-treated PWS subjects had lower leptin and higher IGF-1 and adiponectin than untreated subjects; fasting ghrelin, PYY and insulin levels were comparable. Ghrelin correlated inversely with BCAA in PWS but not OC. Adiponectin correlated negatively with BMIz and HOMA-IR in PWS; in contrast, adiponectin correlated more strongly with BCAA than BMIz or HOMA-IR in OC. Conclusions BCAA levels were lower in PWS females than OC females and correlated inversely with ghrelin. Low BCAA in PWS females may promote hyperghrelinaemia and hyperphagia, while hyperadiponectinaemia may maintain insulin sensitivity despite excess weight gain. GH treatment may reduce leptin and increase adiponectin, but does not affect fasting ghrelin or PYY.Item Open Access Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation.(J Clin Invest, 2015-01) Gerriets, Valerie A; Kishton, Rigel J; Nichols, Amanda G; Macintyre, Andrew N; Inoue, Makoto; Ilkayeva, Olga; Winter, Peter S; Liu, Xiaojing; Priyadharshini, Bhavana; Slawinska, Marta E; Haeberli, Lea; Huck, Catherine; Turka, Laurence A; Wood, Kris C; Hale, Laura P; Smith, Paul A; Schneider, Martin A; MacIver, Nancie J; Locasale, Jason W; Newgard, Christopher B; Shinohara, Mari L; Rathmell, Jeffrey CActivation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.Item Open Access Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure With Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure.(J Am Heart Assoc, 2016-07-29) Hunter, Wynn G; Kelly, Jacob P; McGarrah, Robert W; Khouri, Michel G; Craig, Damian; Haynes, Carol; Ilkayeva, Olga; Stevens, Robert D; Bain, James R; Muehlbauer, Michael J; Newgard, Christopher B; Felker, G Michael; Hernandez, Adrian F; Velazquez, Eric J; Kraus, William E; Shah, Svati HBACKGROUND: Metabolic impairment is an important contributor to heart failure (HF) pathogenesis and progression. Dysregulated metabolic pathways remain poorly characterized in patients with HF and preserved ejection fraction (HFpEF). We sought to determine metabolic abnormalities in HFpEF and identify pathways differentially altered in HFpEF versus HF with reduced ejection fraction (HFrEF). METHODS AND RESULTS: We identified HFpEF cases, HFrEF controls, and no-HF controls from the CATHGEN study of sequential patients undergoing cardiac catheterization. HFpEF cases (N=282) were defined by left ventricular ejection fraction (LVEF) ≥45%, diastolic dysfunction grade ≥1, and history of HF; HFrEF controls (N=279) were defined similarly, except for having LVEF <45%. No-HF controls (N=191) had LVEF ≥45%, normal diastolic function, and no HF diagnosis. Targeted mass spectrometry and enzymatic assays were used to quantify 63 metabolites in fasting plasma. Principal components analysis reduced the 63 metabolites to uncorrelated factors, which were compared across groups using ANCOVA. In basic and fully adjusted models, long-chain acylcarnitine factor levels differed significantly across groups (P<0.0001) and were greater in HFrEF than HFpEF (P=0.0004), both of which were greater than no-HF controls. We confirmed these findings in sensitivity analyses using stricter inclusion criteria, alternative LVEF thresholds, and adjustment for insulin resistance. CONCLUSIONS: We identified novel circulating metabolites reflecting impaired or dysregulated fatty acid oxidation that are independently associated with HF and differentially elevated in HFpEF and HFrEF. These results elucidate a specific metabolic pathway in HF and suggest a shared metabolic mechanism in HF along the LVEF spectrum.Item Open Access Modification of messenger RNA by 2′-O-methylation regulates gene expression in vivo(Nature Communications, 2019-12) Elliott, Brittany A; Ho, Hsiang-Ting; Ranganathan, Srivathsan V; Vangaveti, Sweta; Ilkayeva, Olga; Abou Assi, Hala; Choi, Alex K; Agris, Paul F; Holley, Christopher LItem Open Access The Pediatric Obesity Microbiome and Metabolism Study (POMMS): Methods, Baseline Data, and Early Insights.(Obesity (Silver Spring, Md.), 2021-03) McCann, Jessica R; Bihlmeyer, Nathan A; Roche, Kimberly; Catherine, Cameron; Jawahar, Jayanth; Kwee, Lydia Coulter; Younge, Noelle E; Silverman, Justin; Ilkayeva, Olga; Sarria, Charles; Zizzi, Alexandra; Wootton, Janet; Poppe, Lisa; Anderson, Paul; Arlotto, Michelle; Wei, Zhengzheng; Granek, Joshua A; Valdivia, Raphael H; David, Lawrence A; Dressman, Holly K; Newgard, Christopher B; Shah, Svati H; Seed, Patrick C; Rawls, John F; Armstrong, Sarah CObjective
The purpose of this study was to establish a biorepository of clinical, metabolomic, and microbiome samples from adolescents with obesity as they undergo lifestyle modification.Methods
A total of 223 adolescents aged 10 to 18 years with BMI ≥95th percentile were enrolled, along with 71 healthy weight participants. Clinical data, fasting serum, and fecal samples were collected at repeated intervals over 6 months. Herein, the study design, data collection methods, and interim analysis-including targeted serum metabolite measurements and fecal 16S ribosomal RNA gene amplicon sequencing among adolescents with obesity (n = 27) and healthy weight controls (n = 27)-are presented.Results
Adolescents with obesity have higher serum alanine aminotransferase, C-reactive protein, and glycated hemoglobin, and they have lower high-density lipoprotein cholesterol when compared with healthy weight controls. Metabolomics revealed differences in branched-chain amino acid-related metabolites. Also observed was a differential abundance of specific microbial taxa and lower species diversity among adolescents with obesity when compared with the healthy weight group.Conclusions
The Pediatric Metabolism and Microbiome Study (POMMS) biorepository is available as a shared resource. Early findings suggest evidence of a metabolic signature of obesity unique to adolescents, along with confirmation of previously reported findings that describe metabolic and microbiome markers of obesity.Item Open Access Urine tricarboxylic acid cycle signatures of early-stage diabetic kidney disease.(Metabolomics : Official journal of the Metabolomic Society, 2021-12) Lunyera, Joseph; Diamantidis, Clarissa J; Bosworth, Hayden B; Patel, Uptal D; Bain, James; Muehlbauer, Michael J; Ilkayeva, Olga; Nguyen, Maggie; Sharma, Binu; Ma, Jennie Z; Shah, Svati H; Scialla, Julia JIntroduction
Urine tricarboxylic acid (TCA) cycle organic anions (OAs) are elevated in diabetes and may be biomarkers for diabetic kidney disease (DKD) progression.Objectives
We assessed associations of 10 urine TCA cycle OAs with estimated glomerular filtration rate (eGFR) and eGFR slope.Methods
This study is ancillary to the Simultaneous Risk Factor Control Using Telehealth to SlOw Progression of Diabetic Kidney Disease (STOP-DKD) Trial-a randomized trial of pharmacist-led medication and behavior management in 281 patients with early to moderate DKD at Duke from 2014 to 2015. We used linear mixed models to assess associations of urine TCA cycle OAs with outcomes and modelled TCA cycle OAs as: (1) the average of z-scores for each OA; and (2) principal component (PC) scores derived by principal component analysis (PCA). Untargeted urine metabolomics were added for additional discovery.Results
Among 132 participants with 24 h urine samples (50% men; 58% Black; mean age 64 years [SD 9]; mean eGFR 74 ml/min/1.73m2 [SD 21] and median urine albumin-to-creatinine [UACR] 20 mg/g [IQR 8-95]), PCA identified 3 OA metabolite PCs. Malate, fumarate, pyruvate, α-ketoglutarate, lactate, succinate and citrate/isocitrate loaded positively on PC1; methylsuccinate, ethylmalonate and succinate loaded positively on PC2; and methylmalonate, ethylmalonate and citrate/isocitrate loaded negatively on PC3. Over a median follow-up of 1.8 years (IQR, 1.2 to 2.2), higher average OA z-score was strongly associated with higher eGFR after covariate adjustment (p = 0.01), but not with eGFR slope (p = 0.9). Higher PC3, but not other PCs, was associated with lower eGFR (p < 0.001). Conditional random forests and smooth clipped absolute deviation models confirmed methylmalonate, citrate/isocitrate, and ethylmalonate, and added lactate as top ranked metabolites in models of baseline eGFR (R-squared 0.32 and 0.33, respectively). Untargeted urine metabolites confirmed association of urine TCA cycle OAs with kidney function.Conclusion
Thus, lower urine TCA cycle OAs, most notably lower methylmalonate, ethylmalonate and citrate/isocitrate, are potential indicators of kidney impairment in early stage DKD.