Browsing by Author "Ishikawa, Tomoki"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway.(Science (New York, N.Y.), 2019-05) Lee, Yu-Ru; Chen, Ming; Lee, Jonathan D; Zhang, Jinfang; Lin, Shu-Yu; Fu, Tian-Min; Chen, Hao; Ishikawa, Tomoki; Chiang, Shang-Yin; Katon, Jesse; Zhang, Yang; Shulga, Yulia V; Bester, Assaf C; Fung, Jacqueline; Monteleone, Emanuele; Wan, Lixin; Shen, Chen; Hsu, Chih-Hung; Papa, Antonella; Clohessy, John G; Teruya-Feldstein, Julie; Jain, Suresh; Wu, Hao; Matesic, Lydia; Chen, Ruey-Hwa; Wei, Wenyi; Pandolfi, Pier PaoloActivation of tumor suppressors for the treatment of human cancer has been a long sought, yet elusive, strategy. PTEN is a critical tumor suppressive phosphatase that is active in its dimer configuration at the plasma membrane. Polyubiquitination by the ubiquitin E3 ligase WWP1 (WW domain-containing ubiquitin E3 ligase 1) suppressed the dimerization, membrane recruitment, and function of PTEN. Either genetic ablation or pharmacological inhibition of WWP1 triggered PTEN reactivation and unleashed tumor suppressive activity. WWP1 appears to be a direct MYC (MYC proto-oncogene) target gene and was critical for MYC-driven tumorigenesis. We identified indole-3-carbinol, a compound found in cruciferous vegetables, as a natural and potent WWP1 inhibitor. Thus, our findings unravel a potential therapeutic strategy for cancer prevention and treatment through PTEN reactivation.Item Open Access Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis.(Cancer discovery, 2015-05) Lunardi, Andrea; Varmeh, Shohreh; Chen, Ming; Taulli, Riccardo; Guarnerio, Jlenia; Ala, Ugo; Seitzer, Nina; Ishikawa, Tomoki; Carver, Brett S; Hobbs, Robin M; Quarantotti, Valentina; Ng, Christopher; Berger, Alice H; Nardella, Caterina; Poliseno, Laura; Montironi, Rodolfo; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Signoretti, Sabina; Pandolfi, Pier PaoloUNLABELLED:The ETS family of transcription factors has been repeatedly implicated in tumorigenesis. In prostate cancer, ETS family members, such as ERG, ETV1, ETV4, and ETV5, are frequently overexpressed due to chromosomal translocations, but the molecular mechanisms by which they promote prostate tumorigenesis remain largely undefined. Here, we show that ETS family members, such as ERG and ETV1, directly repress the expression of the checkpoint kinase 1 (CHK1), a key DNA damage response cell-cycle regulator essential for the maintenance of genome integrity. Critically, we find that ERG expression correlates with CHK1 downregulation in human patients and demonstrate that Chk1 heterozygosity promotes the progression of high-grade prostatic intraepithelial neoplasia into prostatic invasive carcinoma in Pten(+) (/-) mice. Importantly, CHK1 downregulation sensitizes prostate tumor cells to etoposide but not to docetaxel treatment. Thus, we identify CHK1 as a key functional target of the ETS proto-oncogenic family with important therapeutic implications. SIGNIFICANCE:Genetic translocation and aberrant expression of ETS family members is a common event in different types of human tumors. Here, we show that through the transcriptional repression of CHK1, ETS factors may favor DNA damage accumulation and consequent genetic instability in proliferating cells. Importantly, our findings provide a rationale for testing DNA replication inhibitor agents in ETS-positive TP53-proficient tumors.