Browsing by Author "Jarvis, E"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Male mice song syntax depends on social contexts and influences female preferences.(Front Behav Neurosci, 2015) Chabout, J; Sarkar, A; Dunson, DB; Jarvis, EIn 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.Item Open Access Site-specific retinoic acid production in the brain of adult songbirds.(Neuron, 2000-08) Denisenko-Nehrbass, NI; Jarvis, E; Scharff, C; Nottebohm, F; Mello, CVThe song system of songbirds, a set of brain nuclei necessary for song learning and production, has distinctive morphological and functional properties. Utilizing differential display, we searched for molecular components involved in song system regulation. We identified a cDNA (zRalDH) that encodes a class 1 aldehyde dehydrogenase. zRalDH was highly expressed in various song nuclei and synthesized retinoic acid efficiently. Brain areas expressing zRalDH generated retinoic acid. Within song nucleus HVC, only projection neurons not undergoing adult neurogenesis expressed zRalDH. Blocking zRalDH activity in the HVC of juveniles interfered with normal song development. Our results provide conclusive evidence for localized retinoic acid synthesis in an adult vertebrate brain and indicate that the retinoic acid-generating system plays a significant role in the maturation of a learned behavior.