Browsing by Author "Jenkins, Clinton N"
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Open Access Batch-produced, GIS-informed range maps for birds based on provenanced, crowd-sourced data inform conservation assessments.(PloS one, 2021-01) Huang, Ryan M; Medina, Wilderson; Brooks, Thomas M; Butchart, Stuart HM; Fitzpatrick, John W; Hermes, Claudia; Jenkins, Clinton N; Johnston, Alison; Lebbin, Daniel J; Li, Binbin V; Ocampo-Peñuela, Natalia; Parr, Mike; Wheatley, Hannah; Wiedenfeld, David A; Wood, Christopher; Pimm, Stuart LAccurate maps of species ranges are essential to inform conservation, but time-consuming to produce and update. Given the pace of change of knowledge about species distributions and shifts in ranges under climate change and land use, a need exists for timely mapping approaches that enable batch processing employing widely available data. We develop a systematic approach of batch-processing range maps and derived Area of Habitat maps for terrestrial bird species with published ranges below 125,000 km2 in Central and South America. (Area of Habitat is the habitat available to a species within its range.) We combine existing range maps with the rapidly expanding crowd-sourced eBird data of presences and absences from frequently surveyed locations, plus readily accessible, high resolution satellite data on forest cover and elevation to map the Area of Habitat available to each species. Users can interrogate the maps produced to see details of the observations that contributed to the ranges. Previous estimates of Areas of Habitat were constrained within the published ranges and thus were, by definition, smaller-typically about 30%. This reflects how little habitat within suitable elevation ranges exists within the published ranges. Our results show that on average, Areas of Habitat are 12% larger than published ranges, reflecting the often-considerable extent that eBird records expand the known distributions of species. Interestingly, there are substantial differences between threatened and non-threatened species. Some 40% of Critically Endangered, 43% of Endangered, and 55% of Vulnerable species have Areas of Habitat larger than their published ranges, compared with 31% for Near Threatened and Least Concern species. The important finding for conservation is that threatened species are generally more widespread than previously estimated.Item Open Access Connecting Habitats to Prevent Species Extinctions Conservation biologists are creating links between forest fragments where the most animals with small ranges live.(AMERICAN SCIENTIST, 2019-05-01) Pimm, Stuart L; Jenkins, Clinton NItem Open Access Global Conservation Significance of Ecuador's Yasuni National Park(2010) Bass, Margot S; Finer, Matt; Jenkins, Clinton N; Kreft, Holger; Cisneros-Heredia, Diego F; McCracken, Shawn F; Pitman, Nigel CA; English, Peter H; Swing, Kelly; Villa, Gorky; Di Fiore, Anthony; Voigt, Christian C; Kunz, Thomas HBackground: The threats facing Ecuador's Yasuni National Park are emblematic of those confronting the greater western Amazon, one of the world's last high-biodiversity wilderness areas. Notably, the country's second largest untapped oil reserves-called "ITT''-lie beneath an intact, remote section of the park. The conservation significance of Yasuni may weigh heavily in upcoming state-level and international decisions, including whether to develop the oil or invest in alternatives. Methodology/Principal Findings: We conducted the first comprehensive synthesis of biodiversity data for Yasuni. Mapping amphibian, bird, mammal, and plant distributions, we found eastern Ecuador and northern Peru to be the only regions in South America where species richness centers for all four taxonomic groups overlap. This quadruple richness center has only one viable strict protected area (IUCN levels I-IV): Yasuni. The park covers just 14% of the quadruple richness center's area, whereas active or proposed oil concessions cover 79%. Using field inventory data, we compared Yasuni's local (alpha) and landscape (gamma) diversity to other sites, in the western Amazon and globally. These analyses further suggest that Yasuni is among the most biodiverse places on Earth, with apparent world richness records for amphibians, reptiles, bats, and trees. Yasuni also protects a considerable number of threatened species and regional endemics. Conclusions/Significance: Yasuni has outstanding global conservation significance due to its extraordinary biodiversity and potential to sustain this biodiversity in the long term because of its 1) large size and wilderness character, 2) intact large-vertebrate assemblage, 3) IUCN level-II protection status in a region lacking other strict protected areas, and 4) likelihood of maintaining wet, rainforest conditions while anticipated climate change-induced drought intensifies in the eastern Amazon. However, further oil development in Yasuni jeopardizes its conservation values. These findings form the scientific basis for policy recommendations, including stopping any new oil activities and road construction in Yasuni and creating areas off-limits to large-scale development in adjacent northern Peru.Item Open Access How to protect half of Earth to ensure it protects sufficient biodiversity.(Science advances, 2018-08-29) Pimm, Stuart L; Jenkins, Clinton N; Li, Binbin VIt is theoretically possible to protect large fractions of species in relatively small regions. For plants, 85% of species occur entirely within just over a third of the Earth's land surface, carefully optimized to maximize the species captured. Well-known vertebrate taxa show similar patterns. Protecting half of Earth might not be necessary, but would it be sufficient given the current trends of protection? The predilection of national governments is to protect areas that are "wild," that is, typically remote, cold, or arid. Unfortunately, those areas often hold relatively few species. Wild places likely afford the easier opportunities for the future expansion of protected areas, with the expansion into human-dominated landscapes the greater challenge. We identify regions that are not currently protected, but that are wild, and consider which of them hold substantial numbers of especially small-ranged vertebrate species. We assess how successful the strategy of protecting the wilder half of Earth might be in conserving biodiversity. It is far from sufficient. (Protecting large wild places for reasons other than biodiversity protection, such as carbon sequestration and other ecosystem services, might still have importance.) Unexpectedly, we also show that, despite the bias in establishing large protected areas in wild places to date, numerous small protected areas are in biodiverse places. They at least partially protect significant fractions of especially small-ranged species. So, while a preoccupation with protecting large areas for the sake of getting half of Earth might achieve little for biodiversity, there is more progress in protecting high-biodiversity areas than currently appreciated. Continuing to prioritize the right parts of Earth, not just the total area protected, is what matters for biodiversity.Item Open Access Incorporating explicit geospatial data shows more species at risk of extinction than the current Red List.(Science advances, 2016-11-09) Ocampo-Peñuela, Natalia; Jenkins, Clinton N; Vijay, Varsha; Li, Binbin V; Pimm, Stuart LThe IUCN (International Union for Conservation of Nature) Red List classifies species according to their risk of extinction, informing global to local conservation decisions. Unfortunately, important geospatial data do not explicitly or efficiently enter this process. Rapid growth in the availability of remotely sensed observations provides fine-scale data on elevation and increasingly sophisticated characterizations of land cover and its changes. These data readily show that species are likely not present within many areas within the overall envelopes of their distributions. Additionally, global databases on protected areas inform how extensively ranges are protected. We selected 586 endemic and threatened forest bird species from six of the world's most biodiverse and threatened places (Atlantic Forest of Brazil, Central America, Western Andes of Colombia, Madagascar, Sumatra, and Southeast Asia). The Red List deems 18% of these species to be threatened (15 critically endangered, 29 endangered, and 64 vulnerable). Inevitably, after refining ranges by elevation and forest cover, ranges shrink. Do they do so consistently? For example, refined ranges of critically endangered species might reduce by (say) 50% but so might the ranges of endangered, vulnerable, and nonthreatened species. Critically, this is not the case. We find that 43% of species fall below the range threshold where comparable species are deemed threatened. Some 210 bird species belong in a higher-threat category than the current Red List placement, including 189 species that are currently deemed nonthreatened. Incorporating readily available spatial data substantially increases the numbers of species that should be considered at risk and alters priority areas for conservation.Item Open Access Mapping Conservation Strategies under a Changing Climate.(Bioscience, 2017-06) Belote, R Travis; Dietz, Matthew S; McKinley, Peter S; Carlson, Anne A; Carroll, Carlos; Jenkins, Clinton N; Urban, Dean L; Fullman, Timothy J; Leppi, Jason C; Aplet, Gregory HItem Open Access Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN Red List.(Trends in ecology & evolution, 2019-11) Brooks, Thomas M; Pimm, Stuart L; Akçakaya, H Resit; Buchanan, Graeme M; Butchart, Stuart HM; Foden, Wendy; Hilton-Taylor, Craig; Hoffmann, Michael; Jenkins, Clinton N; Joppa, Lucas; Li, Binbin V; Menon, Vivek; Ocampo-Peñuela, Natalia; Rondinini, CarloThe International Union for Conservation of Nature (IUCN) Red List of Threatened Species includes assessment of extinction risk for 98 512 species, plus documentation of their range, habitat, elevation, and other factors. These range, habitat and elevation data can be matched with terrestrial land cover and elevation datasets to map the species' area of habitat (AOH; also known as extent of suitable habitat; ESH). This differs from the two spatial metrics used for assessing extinction risk in the IUCN Red List criteria: extent of occurrence (EOO) and area of occupancy (AOO). AOH can guide conservation, for example, through targeting areas for field surveys, assessing proportions of species' habitat within protected areas, and monitoring habitat loss and fragmentation. We recommend that IUCN Red List assessments document AOH wherever practical.Item Open Access Oil and gas projects in the Western Amazon: threats to wilderness, biodiversity, and indigenous peoples.(PLoS One, 2008-08-13) Finer, Matt; Jenkins, Clinton N; Pimm, Stuart L; Keane, Brian; Ross, CarlBACKGROUND: The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2) of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. CONCLUSIONS/SIGNIFICANCE: Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.Item Open Access Remotely Sensed Data Informs Red List Evaluations and Conservation Priorities in Southeast Asia.(PloS one, 2016-01) Li, Binbin V; Hughes, Alice C; Jenkins, Clinton N; Ocampo-Peñuela, Natalia; Pimm, Stuart LThe IUCN Red List has assessed the global distributions of the majority of the world's amphibians, birds and mammals. Yet these assessments lack explicit reference to widely available, remotely-sensed data that can sensibly inform a species' risk of extinction. Our first goal is to add additional quantitative data to the existing standardised process that IUCN employs. Secondly, we ask: do our results suggest species of concern-those at considerably greater risk than hitherto appreciated? Thirdly, these assessments are not only important on a species-by-species basis. By combining distributions of species of concern, we map conservation priorities. We ask to what degree these areas are currently protected and how might knowledge from remote sensing modify the priorities? Finally, we develop a quick and simple method to identify and modify the priority setting in a landscape where natural habitats are disappearing rapidly and so where conventional species' assessments might be too slow to respond. Tropical, mainland Southeast Asia is under exceptional threat, yet relatively poorly known. Here, additional quantitative measures may be particularly helpful. This region contains over 122, 183, and 214 endemic mammals, birds, and amphibians, respectively, of which the IUCN considers 37, 21, and 37 threatened. When corrected for the amount of remaining natural habitats within the known elevation preferences of species, the average sizes of species ranges shrink to <40% of their published ranges. Some 79 mammal, 49 bird, and 184 amphibian ranges are <20,000km2-an area at which IUCN considers most other species to be threatened. Moreover, these species are not better protected by the existing network of protected areas than are species that IUCN accepts as threatened. Simply, there appear to be considerably more species at risk than hitherto appreciated. Furthermore, incorporating remote sensing data showing where habitat loss is prevalent changes the locations of conservation priorities.Item Open Access Targeted habitat restoration can reduce extinction rates in fragmented forests.(Proceedings of the National Academy of Sciences of the United States of America, 2017-09) Newmark, William D; Jenkins, Clinton N; Pimm, Stuart L; McNeally, Phoebe B; Halley, John MThe Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species-area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21-$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide.Item Open Access The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss.(PloS one, 2016-01) Vijay, Varsha; Pimm, Stuart L; Jenkins, Clinton N; Smith, Sharon JPalm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems.Item Open Access Unfulfilled promise of data-driven approaches: response to Peterson et al.(Conservation biology : the journal of the Society for Conservation Biology, 2017-08) Pimm, Stuart L; Harris, Grant; Jenkins, Clinton N; Ocampo-Peñuela, Natalia; Li, Binbin VItem Open Access US protected lands mismatch biodiversity priorities.(Proceedings of the National Academy of Sciences of the United States of America, 2015-04-06) Jenkins, Clinton N; Van Houtan, Kyle S; Pimm, Stuart L; Sexton, Joseph OBecause habitat loss is the main cause of extinction, where and how much society chooses to protect is vital for saving species. The United States is well positioned economically and politically to pursue habitat conservation should it be a societal goal. We assessed the US protected area portfolio with respect to biodiversity in the country. New synthesis maps for terrestrial vertebrates, freshwater fish, and trees permit comparison with protected areas to identify priorities for future conservation investment. Although the total area protected is substantial, its geographic configuration is nearly the opposite of patterns of endemism within the country. Most protected lands are in the West, whereas the vulnerable species are largely in the Southeast. Private land protections are significant, but they are not concentrated where the priorities are. To adequately protect the nation's unique biodiversity, we recommend specific areas deserving additional protection, some of them including public lands, but many others requiring private investment.