Browsing by Author "Ji, Ru-Rong"
Results Per Page
Sort Options
Item Open Access Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions.(Sci Rep, 2016-09-27) Liu, Chien-Cheng; Gao, Yong-Jing; Luo, Hao; Berta, Temugin; Xu, Zhen-Zhong; Ji, Ru-Rong; Tan, Ping-HengIt is well known that interferons (IFNs), such as type-I IFN (IFN-α) and type-II IFN (IFN-γ) are produced by immune cells to elicit antiviral effects. IFNs are also produced by glial cells in the CNS to regulate brain functions. As a proinflammatory cytokine, IFN-γ drives neuropathic pain by inducing microglial activation in the spinal cord. However, little is known about the role of IFN-α in regulating pain sensitivity and synaptic transmission. Strikingly, we found that IFN-α/β receptor (type-I IFN receptor) was expressed by primary afferent terminals in the superficial dorsal horn that co-expressed the neuropeptide CGRP. In the spinal cord IFN-α was primarily expressed by astrocytes. Perfusion of spinal cord slices with IFN-α suppressed excitatory synaptic transmission by reducing the frequency of spontaneous excitatory postsynaptic current (sEPSCs). IFN-α also inhibited nociceptive transmission by reducing capsaicin-induced internalization of NK-1 and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial dorsal horn neurons. Finally, spinal (intrathecal) administration of IFN-α reduced inflammatory pain and increased pain threshold in naïve rats, whereas removal of endogenous IFN-α by a neutralizing antibody induced hyperalgesia. Our findings suggest a new form of neuronal-glial interaction by which IFN-α, produced by astrocytes, inhibits nociceptive transmission in the spinal cord.Item Open Access Molecular and Cellular Mechanisms of miRNA-induced Pain and Itch(2023) Chen, OuyangMicroRNAs (miRNAs) are small, single-stranded non-coding RNAs that play a crucial role in intracellular regulation of gene expression. Emerging evidence indicates that miRNAs can also be found extracellularly in various body fluids, including serum and cerebrospinal fluid (CSF), raising the possibility that these secreted miRNAs could serve as neuromodulators and disease biomarkers. Among these miRNAs, let-7b has been previously identified as a pain inducer through its actions in the peripheral nociceptive system, while TLR7 has been recognized as a critical regulator of pain and itch (pruritus). However, the role of let-7b in spinal cord synaptic transmission and its potential involvement in chronic pain and itch remains unexplored. In this thesis, our investigation commences by demonstrating that let-7b activates a non-canonical pathway of TLR7 in the presence of TRPA1 ion channels. Subsequently, we found that HEK cells and dissociated dorsal root ganglion (DRG) neurons, in which TLR7 and TRPA1 are expressed, exhibit robust calcium responses to extracellular perfusion of let-7b. Furthermore, intrathecal injection of a low dose of let-7b (1 μg) induces short-term (< 24 hours) mechanical and heat hypersensitivity. Mechanistic insights emerge from our observation that synthetic let-7b perfusion of spinal cord slices augments calcium signaling in synaptic terminals and excitatory synaptic transmission (miniature EPSCs) in spinal nociceptive neurons. These effects are contingent on TLR7 and TRPA1 ion channels. Notably, endogenous let-7b is enriched in spinal cord synaptosomes, and its expression is upregulated in DRG neurons, spinal cord tissue, and CSF in response to peripheral inflammation. To explore the role of endogenous let-7b in synaptic transmission and pain, we designed a let-7b antagomir to neutralize secreted let-7b function. Intriguingly, spinal administration of let-7b antagomir attenuates inflammation-induced mechanical pain and synaptic plasticity, suggesting an endogenous role of let-7b in inflammation-induced synaptic plasticity. Additionally, as TLR7 is expressed in spinal microglia, an intrathecal injection of high dose let-7b (10 μg) leads to persistent mechanical allodynia lasting over two weeks, and this effect in abrogated in Tlr7−/− knockout mice. This let-7b induced microgliosis is mitigated by intrathecal administration of minocycline, which suppresses let-7b-induced mechanical allodynia only in male mice but not in female mice. In a mouse cheek model, intradermal injection of let-7b induces both pain (wiping behavior) and itch (scratching behavior). Notably, endosome inhibitors selectively block let-7b-induced itch, without affecting let-7b-induced acute pain. Endosome inhibitors further suppress let-7b-induced persistent calcium increases in cultured trigeminal ganglion neurons. Our findings bring forth the concept that TLR7/TRPA1 axis activation can elicit pain and itch sensations via distinct surface and intracellular calcium signaling pathways within primary sensory neurons. Furthermore, we developed a mouse model of chronic itch induced by cutaneous T cell lymphoma (CTCL). This model is characterized by notable lymphoma growth, chronic scratching for over 60 days, neural innervation of tumor tissue, and elevated levels of let-7b in DRGs. Furthermore, intradermal or systemic administration of let-7b antagomir can alleviate CTCL-induced pruritus. Collectively, this thesis elucidates the novel molecular and cellular mechanisms of pain and itch induced by extracellular miRNA (let-7b), thereby deepening our understanding of the cell biology of primary sensory neurons and neurobiology of pain and itch.
Item Open Access Pain regulation by non-neuronal cells and inflammation.(Science, 2016-11-04) Ji, Ru-Rong; Chamessian, Alexander; Zhang, Yu-QiuAcute pain is protective and a cardinal feature of inflammation. Chronic pain after arthritis, nerve injury, cancer, and chemotherapy is associated with chronic neuroinflammation, a local inflammation in the peripheral or central nervous system. Accumulating evidence suggests that non-neuronal cells such as immune cells, glial cells, keratinocytes, cancer cells, and stem cells play active roles in the pathogenesis and resolution of pain. We review how non-neuronal cells interact with nociceptive neurons by secreting neuroactive signaling molecules that modulate pain. Recent studies also suggest that bacterial infections regulate pain through direct actions on sensory neurons, and specific receptors are present in nociceptors to detect danger signals from infections. We also discuss new therapeutic strategies to control neuroinflammation for the prevention and treatment of chronic pain.Item Open Access Resolvin D5 Inhibits Neuropathic and Inflammatory Pain in Male But Not Female Mice: Distinct Actions of D-Series Resolvins in Chemotherapy-Induced Peripheral Neuropathy.(Frontiers in pharmacology, 2019-01) Luo, Xin; Gu, Yun; Tao, Xueshu; Serhan, Charles Nicholas; Ji, Ru-RongEarlier studies have demonstrated that essential fatty acid-derived specialized pro-resolving mediators (SPMs) promote the resolution of inflammation and pain. However, the potential analgesic actions of SPMs in chemotherapy-induced peripheral neuropathy (CIPN) are not known. Recent results also showed sex dimorphism in immune cell signaling in neuropathic pain. Here, we evaluated the analgesic actions of D-series resolvins (RvD1, RvD2, RvD3, RvD4, and RvD5) on a CIPN in male and female mice. Paclitaxel (PTX, 2 mg/kg), given on days 0, 2, 4, and 6, produced robust mechanical allodynia in both sexes at 2 weeks. Intrathecal injection of RvD1 and RvD2 (100 ng, i.t.) at 2 weeks reversed PTX-induced mechanical allodynia in both sexes, whereas RvD3 and RvD4 (100 ng, i.t.) had no apparent effects on either sex. Interestingly, RvD5 (100 ng, i.t.) only reduced mechanical allodynia in male mice but not in female mice. Notably, PTX-induced mechanical allodynia was fully developed in Trpv1 or Trpa1 knockout mice, showing no sex differences. Also, intrathecal RvD5 reduced mechanical allodynia in male mice lacking Trpv1 or Trpa1, whereas female mice with Trpv1 or Trpa1 deficiency had no response to RvD5. Finally, RvD5-induced male-specific analgesia was also confirmed in an inflammatory pain condition. Formalin-induced second phase pain (licking and flinching) was reduced by intrathecal RvD5 in male but not female mice. These findings identified RvD5 as the first SPM that shows sex dimorphism in pain regulation. Moreover, these results suggest that specific resolvins may be used to treat CIPN, a rising health concern in cancer survivors.Item Open Access SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons.(Neuron, 2016-12-21) Han, Qingjian; Kim, Yong Ho; Wang, Xiaoming; Liu, Di; Zhang, Zhi-Jun; Bey, Alexandra L; Lay, Mark; Chang, Wonseok; Berta, Temugin; Zhang, Yan; Jiang, Yong-Hui; Ji, Ru-RongAbnormal pain sensitivity is commonly associated with autism spectrum disorders (ASDs) and affects the life quality of ASD individuals. SHANK3 deficiency was implicated in ASD and pain dysregulation. Here, we report functional expression of SHANK3 in mouse dorsal root ganglion (DRG) sensory neurons and spinal cord presynaptic terminals. Homozygous and heterozygous Shank3 complete knockout (Δe4-22) results in impaired heat hyperalgesia in inflammatory and neuropathic pain. Specific deletion of Shank3 in Nav1.8-expressing sensory neurons also impairs heat hyperalgesia in homozygous and heterozygous mice. SHANK3 interacts with transient receptor potential subtype V1 (TRPV1) via Proline-rich region and regulates TRPV1 surface expression. Furthermore, capsaicin-induced spontaneous pain, inward currents in DRG neurons, and synaptic currents in spinal cord neurons are all reduced after Shank3 haploinsufficiency. Finally, partial knockdown of SHANK3 expression in human DRG neurons abrogates TRPV1 function. Our findings reveal a peripheral mechanism of SHANK3, which may underlie pain deficits in SHANK3-related ASDs.Item Open Access Sparcl1/Hevin drives pathological pain through spinal cord astrocyte and NMDA receptor signaling.(JCI insight, 2022-10) Chen, Gang; Xu, Jing; Luo, Hao; Luo, Xin; Singh, Sandeep K; Ramirez, Juan J; James, Michael L; Mathew, Joseph P; Berger, Miles; Eroglu, Cagla; Ji, Ru-RongHevin/Sparcl1 is an astrocyte-secreted protein and regulates synapse formation. Here we show that astrocytic hevin signaling plays a critical role in maintaining chronic pain. Compared to wild-type mice, hevin-null mice exhibited normal mechanical and heat sensitivity but reduced inflammatory pain. Interestingly, hevin-null mice have faster recovery than wild-type mice from neuropathic pain after nerve injury. Intrathecal injection of wild-type hevin was sufficient to induce persistent mechanical allodynia in naïve mice. In hevin-null mice with nerve injury, AAV-mediated re-expression of hevin in GFAP-expressing spinal cord astrocytes could reinstate neuropathic pain. Mechanistically, hevin is crucial for spinal cord NMDA receptor (NMDAR) signaling. Hevin potentiated NMDA currents mediated by the GluN2B-containing NMDARs. Furthermore, intrathecal injection of a neutralizing antibody against hevin alleviated acute and persistent inflammatory pain, postoperative pain, and neuropathic pain. Secreted hevin was detected in mouse cerebrospinal fluid (CSF) and nerve injury significantly increased CSF hevin abundance. Finally, neurosurgery caused rapid and substantial increases in SPARCL1/HEVIN levels in human CSF. Collectively, our findings support a critical role of hevin and astrocytes in the maintenance of chronic pain. Neutralizing of secreted hevin with monoclonal antibody may provide a new therapeutic strategy for treating acute and chronic pain and NMDAR-medicated neurodegeneration.Item Open Access Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain.(Proc Natl Acad Sci U S A, 2016-11-01) Sisignano, Marco; Angioni, Carlo; Park, Chul-Kyu; Meyer Dos Santos, Sascha; Jordan, Holger; Kuzikov, Maria; Liu, Di; Zinn, Sebastian; Hohman, Stephan W; Schreiber, Yannick; Zimmer, Béla; Schmidt, Mike; Lu, Ruirui; Suo, Jing; Zhang, Dong-Dong; Schäfer, Stephan MG; Hofmann, Martine; Yekkirala, Ajay S; de Bruin, Natasja; Parnham, Michael J; Woolf, Clifford J; Ji, Ru-Rong; Scholich, Klaus; Geisslinger, GerdChemotherapy-induced peripheral neuropathic pain (CIPNP) is a severe dose- and therapy-limiting side effect of widely used cytostatics that is particularly difficult to treat. Here, we report increased expression of the cytochrome-P450-epoxygenase CYP2J6 and increased concentrations of its linoleic acid metabolite 9,10-EpOME (9,10-epoxy-12Z-octadecenoic acid) in dorsal root ganglia (DRGs) of paclitaxel-treated mice as a model of CIPNP. The lipid sensitizes TRPV1 ion channels in primary sensory neurons and causes increased frequency of spontaneous excitatory postsynaptic currents in spinal cord nociceptive neurons, increased CGRP release from sciatic nerves and DRGs, and a reduction in mechanical and thermal pain hypersensitivity. In a drug repurposing screen targeting CYP2J2, the human ortholog of murine CYP2J6, we identified telmisartan, a widely used angiotensin II receptor antagonist, as a potent inhibitor. In a translational approach, administration of telmisartan reduces EpOME concentrations in DRGs and in plasma and reverses mechanical hypersensitivity in paclitaxel-treated mice. We therefore suggest inhibition of CYP2J isoforms with telmisartan as a treatment option for paclitaxel-induced neuropathic pain.Item Open Access The Cellular Determinants of Spinal and Peripheral Pain Processing(2018) Chamessian, AlexanderChronic pain is a major public health issue, affecting over 100 million people in costing over $600 million annually in the United States. The lack of effective therapies for chronic pain have directly contributed to the ongoing epidemic of opioid abuse and addiction. Deeper understanding the pathogenesis of chronic pain is a prerequisite for remedying the status quo. To that end, in this dissertation, I have undertaken two projects that aim to elucidate the key cellular elements of mechanical pain in the periphery and spinal cord.
Mechanical allodynia is a cardinal feature of pathological pain in which innocuous mechanical stimulation such as light touch produces a painful sensation. Recent work has demonstrated the necessity of cutaneous Aβ low-threshold mechanoreceptors (Aβ-LTMRs) for mechanical allodynia-like behaviors in mice, but its remains unclear whether activation of these neurons alone is sufficient to produce pain behaviors in pathological settings. To address this question, in the first part of this dissertation, I generated and characterized a transgenic mouse line that expresses the optogenetic actuator channelrhodopsin-2 (ChR2) conditionally in Vesicular Glutamate Transporter 1 (Vglut1)-expressing sensory neurons(Vglut1-ChR2). I show that the Vglut1-ChR2 comprises a heterogeneous population of Neurofilament 200-positive, large-sized sensory neurons with cutaneous projections that terminate in Merkel Cell-Neurite Complexes, Meissner Corpuscles and Hair Follicles and with spinal projections that terminate in the deep dorsal horn (Lamina IIi-V) and ventral horn in the spinal cord. In naive Vglut1-ChR2 mice, acute transdermal photostimulation of the plantar hindpaw with blue (470nm) light produced paw withdrawal behaviors in an intensity- and frequency-dependent manner that were abolished by selective pharmacological A-fiber blockade. light-evoked nocifensive behaviors such as licking, biting, jumping and vocalization were virtually absent in Vglut1-ChR2, even at the highest stimulation intensity and frequency. Plantar photostimulation of Vglut1-ChR2 mice in a Real-Time Place-Escape/Avoidance (RT-PEA) assay did not produce aversion, in contrast to the strong aversion elicited in mice that conditionally express ChR2 in Nav1.8-positive and Npy2r-positive nociceptors. Surprisingly, in the Spared Nerve Injury model of neuropathic pain, Vglut1-ChR2 mice did not show significant differences in light-evoked withdrawal behaviors or real-time aversion despite hypersensitivity to natural mechanical stimuli. Thus, I conclude that optogenetic activation of Vglut1-ChR2 neurons alone is not sufficient to produce pain-like behaviors in neuropathic mice.
In the second part of this dissertation, I investigated the cellular determinants of mechanical pain processing in the spinal dorsal horn (SDH), which is comprised of distinct neuronal populations that process different somatosensory modalities. Somatostatin (SST)-expressing interneurons in the SDH have been implicated specifically in mediating mechanical pain. Identifying the transcriptomic profile of SST neurons could elucidate the unique genetic features of this population and enable selective analgesic targeting. To that end, I combined the Isolation of Nuclei Tagged in Specific Cell Types (INTACT) method and Fluorescence Activated Nuclei Sorting (FANS) to capture tagged SST nuclei in the SDH of adult male mice. Using RNA-sequencing (RNA-seq), I uncovered more than 13,000 genes. Differential gene expression analysis revealed more than 900 genes with at least 2-fold enrichment. In addition to many known dorsal horn genes, I identified and validated several novel transcripts from pharmacologically tractable functional classes: Carbonic Anhydrase 12 (Car12), Phosphodiesterase 11A (Pde11a), and Protease-Activated Receptor 3 (F2rl2). In situ hybridization of these novel genes showed differential expression patterns in the SDH, demonstrating the presence of transcriptionally distinct subpopulations within the SST population. Overall, my findings provide new insights into the gene repertoire of SST dorsal horn neurons and reveal several novel targets for pharmacological modulation of this pain-mediating population and pathological pain.
Item Open Access β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain.(Nat Commun, 2016-08-19) Chen, Gang; Xie, Rou-Gang; Gao, Yong-Jing; Xu, Zhen-Zhong; Zhao, Lin-Xia; Bang, Sangsu; Berta, Temugin; Park, Chul-Kyu; Lay, Mark; Chen, Wei; Ji, Ru-RongMechanisms of acute pain transition to chronic pain are not fully understood. Here we demonstrate an active role of β-arrestin 2 (Arrb2) in regulating spinal cord NMDA receptor (NMDAR) function and the duration of pain. Intrathecal injection of the mu-opioid receptor agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin produces paradoxical behavioural responses: early-phase analgesia and late-phase mechanical allodynia which requires NMDAR; both phases are prolonged in Arrb2 knockout (KO) mice. Spinal administration of NMDA induces GluN2B-dependent mechanical allodynia, which is prolonged in Arrb2-KO mice and conditional KO mice lacking Arrb2 in presynaptic terminals expressing Nav1.8. Loss of Arrb2 also results in prolongation of inflammatory pain and neuropathic pain and enhancement of GluN2B-mediated NMDA currents in spinal lamina IIo not lamina I neurons. Finally, spinal over-expression of Arrb2 reverses chronic neuropathic pain after nerve injury. Thus, spinal Arrb2 may serve as an intracellular gate for acute to chronic pain transition via desensitization of NMDAR.