Browsing by Author "Jin, Yuliang"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Restricted Application of Edwards' statistical mechanics to high-dimensional jammed sphere packings.(Phys Rev E Stat Nonlin Soft Matter Phys, 2010-11) Jin, Yuliang; Charbonneau, Patrick; Meyer, Sam; Song, Chaoming; Zamponi, FrancescoThe isostatic jamming limit of frictionless spherical particles from Edwards' statistical mechanics [Song et al., Nature (London) 453, 629 (2008)] is generalized to arbitrary dimension d using a liquid-state description. The asymptotic high-dimensional behavior of the self-consistent relation is obtained by saddle-point evaluation and checked numerically. The resulting random close packing density scaling ϕ∼d2(-d) is consistent with that of other approaches, such as replica theory and density-functional theory. The validity of various structural approximations is assessed by comparing with three- to six-dimensional isostatic packings obtained from simulations. These numerical results support a growing accuracy of the theoretical approach with dimension. The approach could thus serve as a starting point to obtain a geometrical understanding of the higher-order correlations present in jammed packings.Item Open Access Dimensional dependence of the Stokes-Einstein relation and its violation(Journal of Chemical Physics, 2013-10-28) Charbonneau, Benoit; Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Zamponi, FrancescoWe generalize to higher spatial dimensions the Stokes-Einstein relation (SER) as well as the leading correction to diffusivity in finite systems with periodic boundary conditions, and validate these results with numerical simulations. We then investigate the evolution of the high-density SER violation with dimension in simple hard sphere glass formers. The analysis suggests that this SER violation disappears around dimension d u = 8, above which it is not observed. The critical exponent associated with the violation appears to evolve linearly in 8 - d, below d = 8, as predicted by Biroli and Bouchaud [J. Phys.: Condens. Matter 19, 205101 (2007)], but the linear coefficient is not consistent with the prediction. The SER violation with d establishes a new benchmark for theory, and its complete description remains an open problem. © 2013 AIP Publishing LLC.Item Open Access Dimensional study of the dynamical arrest in a random Lorentz gas.(Phys Rev E Stat Nonlin Soft Matter Phys, 2015-04) Jin, Yuliang; Charbonneau, PatrickThe random Lorentz gas (RLG) is a minimal model for transport in heterogeneous media. Upon increasing the obstacle density, it exhibits a growing subdiffusive transport regime and then a dynamical arrest. Here, we study the dimensional dependence of the dynamical arrest, which can be mapped onto the void percolation transition for Poisson-distributed point obstacles. We numerically determine the arrest in dimensions d=2-6. Comparison of the results with standard mode-coupling theory reveals that the dynamical theory prediction grows increasingly worse with d. In an effort to clarify the origin of this discrepancy, we relate the dynamical arrest in the RLG to the dynamic glass transition of the infinite-range Mari-Kurchan-model glass former. Through a mixed static and dynamical analysis, we then extract an improved dimensional scaling form as well as a geometrical upper bound for the arrest. The results suggest that understanding the asymptotic behavior of the random Lorentz gas may be key to surmounting fundamental difficulties with the mode-coupling theory of glasses.Item Open Access Growing timescales and lengthscales characterizing vibrations of amorphous solids.(Proc Natl Acad Sci U S A, 2016-07-26) Berthier, Ludovic; Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Seoane, Beatriz; Zamponi, FrancescoLow-temperature properties of crystalline solids can be understood using harmonic perturbations around a perfect lattice, as in Debye's theory. Low-temperature properties of amorphous solids, however, strongly depart from such descriptions, displaying enhanced transport, activated slow dynamics across energy barriers, excess vibrational modes with respect to Debye's theory (i.e., a boson peak), and complex irreversible responses to small mechanical deformations. These experimental observations indirectly suggest that the dynamics of amorphous solids becomes anomalous at low temperatures. Here, we present direct numerical evidence that vibrations change nature at a well-defined location deep inside the glass phase of a simple glass former. We provide a real-space description of this transition and of the rapidly growing time- and lengthscales that accompany it. Our results provide the seed for a universal understanding of low-temperature glass anomalies within the theoretical framework of the recently discovered Gardner phase transition.Item Open Access Hopping and the Stokes-Einstein relation breakdown in simple glass formers.(Proc Natl Acad Sci U S A, 2014-10-21) Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Zamponi, FrancescoOne of the most actively debated issues in the study of the glass transition is whether a mean-field description is a reasonable starting point for understanding experimental glass formers. Although the mean-field theory of the glass transition--like that of other statistical systems--is exact when the spatial dimension d → ∞, the evolution of systems properties with d may not be smooth. Finite-dimensional effects could dramatically change what happens in physical dimensions,d = 2, 3. For standard phase transitions finite-dimensional effects are typically captured by renormalization group methods, but for glasses the corrections are much more subtle and only partially understood. Here, we investigate hopping between localized cages formed by neighboring particles in a model that allows to cleanly isolate that effect. By bringing together results from replica theory, cavity reconstruction, void percolation, and molecular dynamics, we obtain insights into how hopping induces a breakdown of the Stokes-Einstein relation and modifies the mean-field scenario in experimental systems. Although hopping is found to supersede the dynamical glass transition, it nonetheless leaves a sizable part of the critical regime untouched. By providing a constructive framework for identifying and quantifying the role of hopping, we thus take an important step toward describing dynamic facilitation in the framework of the mean-field theory of glasses.Item Open Access Numerical detection of the Gardner transition in a mean-field glass former.(Phys Rev E Stat Nonlin Soft Matter Phys, 2015-07) Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, FrancescoRecent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.