Browsing by Author "Kao, T"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A worldwide phylogeny of Adiantum (Pteridaceae) reveals remarkable convergent evolution in leaf blade architecture(Taxon, 2018-06-01) Huiet, L; Li, F; Kao, T; Prado, J; Smith, AR; Schuettpelz, E; Pryeri, KM© International Association for Plant Taxonomy (IAPT) 2018, All rights reserved. Adiantum is among the most distinctive and easily recognized leptosporangiate fern genera. Despite encompassing an astonishing range of leaf complexity, all species of Adiantum share a unique character state not observed in other ferns: sporangia borne directly on the reflexed leaf margin or “false indusium” (pseudoindusium). The over 200 species of Adiantum span six continents and are nearly all terrestrial. Here, we present one of the most comprehensive phylogenies for any large (200+ spp.) monophyletic, subcosmopolitan genus of ferns to date. We build upon previous datasets, providing new data from four plastid markers (rbcL, atpA, rpoA, chlN) for 146 taxa. All sampled taxa can be unequivocally assigned to one of nine robustly supported clades. Although some of these unite to form larger, well-supported lineages, the backbone of our phylogeny has several short branches and generally weak support, making it difficult to accurately assess deep relationships. Our maximum likelihood-based ancestral character state reconstructions of leaf blade architecture reveal remarkable convergent evolution across multiple clades for nearly all leaf forms. A single unique synapomorphy—leaves once-pinnate, usually with prolonged rooting tips—defines the philippense clade. Although a rare occurrence in Adiantum, simple leaves occur in three distinct clades (davidii, philippense, peruvianum). Most taxa have leaves that are more than once-pinnate, and only a few of these (in the formosum and pedatum clades) exhibit the distinct pseudopedate form. Distributional ranges for each of the terminal taxa show that most species (75%) are restricted to only one of six major biogeographical regions. Forty-eight of our sampled species (nearly one-third) are endemic to South America.Item Open Access Baja: A New Monospecific Genus Segregated from Cheilanthes s. l. (Pteridaceae)(Systematic Botany, 2019-09-06) George, LO; Pryer, KM; Kao, T; Huiet, L; Windham, MDItem Open Access Infraspecific diversification of the star cloak fern (Notholaena standleyi) in the deserts of the United States and Mexico.(American journal of botany, 2020-04-07) Kao, T; Rothfels, CJ; Melgoza‐Castillo, A; Pryer, KM; Windham, MDPREMISE:Not all ferns grow in moist and shaded habitats. One well-known example is Notholaena standleyi, a species that thrives in deserts of the southwestern United States and Mexico. This species exhibits several "chemotypes" that differ in farina (flavonoid exudates) color and chemistry. By integrating data from molecular phylogenetics, cytology, biochemistry, and biogeography, we circumscribed the major evolutionary lineages within N. standleyi and reconstructed their diversification histories. METHODS:Forty-eight samples were selected from across the geographic distribution of N. standleyi. Phylogenetic relationships were inferred using four plastid and five nuclear markers. Ploidy levels were inferred using spore sizes calibrated by chromosome counts, and farina chemistry was compared using thin-layer chromatography. RESULTS:Four clades are recognized, three of which roughly correspond to previously recognized chemotypes. The diploid clades G and Y are found in the Sonoran and Chihuahuan deserts, respectively; they are estimated to have diverged in the Pleistocene, congruent with the postulated timing of climatological events separating these two deserts. Clade P/YG is tetraploid and partially overlaps the distribution of clade Y in the eastern Chihuahuan Desert. It is apparently confined to limestone, a geologic substrate rarely occupied by members of the other clades. The cryptic (C) clade, a diploid group known only from southern Mexico and highly disjunct from the other three clades, is newly recognized here. CONCLUSIONS:Our results reveal a complex intraspecific diversification history of N. standleyi, traceable to a variety of evolutionary drivers including classic allopatry, parapatry with or without changes in geologic substrate, and sympatric divergence through polyploidization.Item Open Access Low-copy nuclear sequence data confirm complex patterns of farina evolution in notholaenid ferns (Pteridaceae).(Molecular phylogenetics and evolution, 2019-09) Kao, T; Pryer, KM; Freund, FD; Windham, MD; Rothfels, CJNotholaenids are an unusual group of ferns that have adapted to, and diversified within, the deserts of Mexico and the southwestern United States. With approximately 40 species, this group is noted for being desiccation-tolerant and having "farina"-powdery exudates of lipophilic flavonoid aglycones-that occur on both the gametophytic and sporophytic phases of their life cycle. The most recent circumscription of notholaenids based on plastid markers surprisingly suggests that several morphological characters, including the expression of farina, are homoplasious. In a striking case of convergence, Notholaena standleyi appears to be distantly related to core Notholaena, with several taxa not before associated with Notholaena nested between them. Such conflicts can be due to morphological homoplasy resulting from adaptive convergence or, alternatively, the plastid phylogeny itself might be misleading, diverging from the true species tree due to incomplete lineage sorting, hybridization, or other factors. In this study, we present a species phylogeny for notholaenid ferns, using four low-copy nuclear loci and concatenated data from three plastid loci. A total of 61 individuals (49 notholaenids and 12 outgroup taxa) were sampled, including 31 out of 37 recognized notholaenid species. The homeologous/allelic nuclear sequences were retrieved using PacBio sequencing and the PURC bioinformatics pipeline. Each dataset was first analyzed individually using maximum likelihood and Bayesian inference, and the species phylogeny was inferred using *BEAST. Although we observed several incongruences between the nuclear and plastid phylogenies, our principal results are broadly congruent with previous inferences based on plastid data. By mapping the presence of farina and their biochemical constitutions on our consensus phylogenetic tree, we confirmed that the characters are indeed homoplastic and have complex evolutionary histories. Hybridization among recognized species of the notholaenid clade appears to be relatively rare compared to that observed in other well-studied fern genera.Item Open Access Origins of the endemic scaly tree ferns on the galápagos and Cocos Islands(International Journal of Plant Sciences, 2015-11-01) Kao, T; Pryer, KM; Turner, MD; White, RA; Korall, P© 2015 by The University of Chicago. All rights reserved. Premise of research. Successful long-distance dispersal is rarely observed in scaly tree ferns (Cyatheaceae). Nevertheless, recent molecular evidence has suggested that the four endemic scaly tree ferns on the Galápagos Archipelago (Cyathea weatherbyana) and Cocos Island (Cyathea alfonsiana, Cyathea nesiotica, and Cyathea notabilis), two oceanic island groups west of Central and northern South America, probably each originated from different mainland America ancestors. However, the phylogenetic relationships inferred among these endemics and their mainland relatives have been unclear. This study is aimed at better resolving the relationships and tracing the origins of these island endemics. Methodology. Five plastid regions from 35 Cyathea species were analyzed to reconstruct phylogenetic relationships using parsimony, likelihood, and Bayesian approaches. We also estimated divergence times of these species, and our chronogram was used to reconstruct their biogeographical range history. Pivotal results. Our well-resolved phylogenetic tree of Cyathea, which is in agreement with previous studies, shows that when the four Galápagos and Cocos endemics are included, they each belong to separate subclades. Our biogeographical study suggests that the four endemics originated from independent colonization events from mainland America and that there was no dispersal of Cyathea between the island groups. We reveal more detailed relationships among the endemics and their respective close mainland relatives; some of these relationships differ from previous studies. Our findings are corroborated by new morphological data from ongoing stem anatomy studies. Conclusions. The four scaly tree ferns endemic to the Galápagos and Cocos Islands each did indeed originate as independent colonization events from separate sources in mainland America, and their closest relatives are identified here.