Browsing by Author "Kay, Richard F"
Results Per Page
Sort Options
Item Open Access 100 years of primate paleontology.(American journal of physical anthropology, 2018-04) Kay, Richard FItem Open Access A diminutive Pliocene guenon from Kanapoi, West Turkana, Kenya.(Journal of human evolution, 2019-10) Plavcan, J Michael; Ward, Carol V; Kay, Richard F; Manthi, Fredrick KAlthough modern guenons are diverse and abundant in Africa, the fossil record of this group is surprisingly sparse. In 2012 the West Turkana Paleo Project team recovered two associated molar teeth of a small primate from the Pliocene site of Kanapoi, West Turkana, Kenya. The teeth are bilophodont and the third molar lacks a hypoconulid, which is diagnostic for Cercopithecini. The teeth are the same size as those of extant Miopithecus, which is thought to be a dwarfed guenon, as well as a partial mandible preserving two worn teeth, previously recovered from Koobi Fora, Kenya, which was also tentatively identified as a guenon possibly allied with Miopithecus. Tooth size and proportions, as well as analysis of relative cusp size and shearing crest development clearly separate the fossil from all known guenons. Based on the Kanapoi material, we erect a new genus and species, Nanopithecus browni gen. et sp. nov. The small size of the specimen suggests either that dwarfing occurred early in the lineage, or at least twice independently, depending on the relationship of the new species with extant Miopithecus. Further, the distinctive habitat and geographic separation from Miopithecus suggests that the origin of small body size is not uniquely linked to the current habitat of Miopithecus, and possibly that relatives of extant Miopithecus were much more widely distributed in the past. This in turn argues caution in using extant biogeography in models of the origins of at least some guenons.Item Open Access Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution?(Molecular Phylogenetics and Evolution, 2015-01-01) Kay, Richard F© 2013 Elsevier Inc. Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa.Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (~26. Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids.Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5. Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7. Ma and 13.5. Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24. Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates.The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South America has been a center for platyrrhine diversification since platyrrhines arrived on the continent in the middle Cenozoic. Platyrrhines dispersed from tropical South America to Patagonia at ~25-24. Ma via a "Paraná Portal" through eastern South America across a retreating Paranense Sea. Phylogenetic bracketing suggests Antillean primates arrived via a sweepstakes route or island chain from northern South America in the Early Miocene, not via a proposed land bridge or island chain (GAARlandia) in the Early Oligocene (~34. Ma). Patagonian and Antillean platyrrhines went extinct without leaving living descendants, the former at the end of the Early Miocene and the latter within the past six thousand years. Molecular evidence suggests crown platyrrhines arrived in Central America by crossing an intermittent connection through the Isthmus of Panama at or after 3.5. Ma. Any more ancient Central American primates, should they be discovered, are unlikely to have given rise to the extant Central American taxa in situ.Item Open Access Darwinius masillae is a strepsirrhine--a reply to Franzen et al. (2009).(Journal of human evolution, 2010-11) Williams, Blythe A; Kay, Richard F; Kirk, E Christopher; Ross, Callum FItem Open Access Dental Ecometrics as a Proxy of Paleoenvironment Reconstruction in the Miocene of South America(2017) Spradley, Jackson PlesIn this dissertation I compile modern mammalian faunal lists, as well as ecomorphological measurements on living marsupials and rodents, to relate the diversity of small mammals, specifically the distributions of their dental topographies, to the climates in which they are found. The emphasis of this dissertation is to demonstrate the potential of distributions of dental topography metrics as proxies for the reconstruction of paleoenvironments in the Miocene of South America.
In Chapter 2, I compile complete, non-volant mammalian species lists for 85 localities across South America as well as 17 localities across Australia and New Guinea. Climatic and habitat variables were also recorded at each locality using GIS spatial data. Additionally, basic ecological data was collected for each species, including: diet, body size, and mode of locomotion. Niche indices that describe the relative numbers of different ecologies were calculated for each locality. These indices then served as the predictor values in a handful of regression models, including regression trees, random forests, and Gaussian process regression. The Australian/New Guinean localities were used as a geographically and phylogenetically independent for the purposes of testing the models derived from South America.
As for the dental ecomorphological analysis, I use three separate measures of dental topography, each of which measures a different component of dental topography; relief (the Relief Index, or RFI), complexity (orientation patch count rotated, OPCR), and sharpness (Dirichlet normal energy, DNE). Together, these metrics quantify the shape of the tooth surface without regard for tooth size. They also do not depend on homologous features on the tooth surface for comparative analysis, allowing a broad taxonomic sample as I present here. After a methodological study of DNE in Chapter 3, I present correlative studies of dental topography and dietary ecology in marsupials and rodents in Chapters 4 and 5, respectively. Finally, using the same localities from Chapter 2, I analyze the distributions of dental topography metrics as they relate to climate and habitat.
Results suggest that sharpness and relief are positively correlated with a higher amount of tough foods—such as leaves or insects—in the diet of marsupials, and that relief is positively correlated with grass-eating in rodents. The distributions of all three metrics show some utility when used as a proxy for climatic variables, though the distributions of RFI in marsupials and OPCR in rodents demonstrate the best correlations.
Overall, this dissertation suggests that dental topography can be used to discriminate dietary categories in a wide variety of mammalian groups, and that the distributions of dental ecometrics can be used as proxies for paleoenvironment reconstruction. This may eliminate the need to reconstruct behavior in individual taxa in order to construct ecological indices for fossil mammalian communities, thus offering a more direct avenue to reconstructing past environments.
Item Open Access Dental topographic change with macrowear and dietary inference in Homunculus patagonicus.(Journal of human evolution, 2020-07) Li, Peishu; Morse, Paul E; Kay, Richard FHomunculus patagonicus is a stem platyrrhine from the late Early Miocene, high-latitude Santa Cruz Formation, Argentina. Its distribution lies farther south than any extant platyrrhine species. Prior studies on the dietary specialization of Homunculus suggest either a mixed diet of fruit and leaves or a more predominantly fruit-eating diet. To gain further insight into the diet of Homunculus, we examined how the occlusal surfaces of the first and second lower molars of Homunculus change with wear by using three homology-free dental topographic measures: Dirichlet normal energy (DNE), orientation patch count rotated (OPCR), and relief index (RFI). We compared these data with wear series of three extant platyrrhine taxa: the folivorous Alouatta, and the frugivorous Ateles and Callicebus (titi monkeys now in the genus Plecturocebus). Previous studies found Alouatta and Ateles exhibit distinctive patterns of change in occlusal morphology with macrowear, possibly related to the more folivorous diet of the former. Based on previous suggestions that Homunculus was at least partially folivorous, we predicted that changes in dental topographic metrics with wear would follow a pattern more similar to that seen in Alouatta than in Ateles or Callicebus. However, wear-induced changes in Homunculus crown sharpness (DNE) and complexity (OPCR) are more similar to the pattern observed in the frugivorous Ateles and Callicebus. Based on similar wear modalities of the lower molars between Homunculus and Callicebus, we infer that Homunculus had a primarily frugivorous diet. Leaves may have provided an alternative dietary resource to accommodate fluctuation in seasonal fruiting abundance in the high-latitude extratropical environment of late Early Miocene Patagonia.Item Open Access Dental topography of the Oligocene anthropoids Aegyptopithecus zeuxis and Apidium phiomense: Paleodietary insights from analysis of wear series.(Journal of human evolution, 2023-05) Morse, Paul E; Pampush, James D; Kay, Richard FFossil primate dietary inference is enhanced when ascertained through multiple, distinct proxies. Dental topography can be used to assess changes in occlusal morphology with macrowear, providing insight on tooth use and function across the lifespans of individuals. We measured convex Dirichlet normal energy-a dental topography metric reflecting occlusal sharpness of features such as cusps and crests-in macrowear series of the second mandibular molars of two African anthropoid taxa from ∼30 Ma (Aegyptopithecus zeuxis and Apidium phiomense). Wear was quantified via three proxies: occlusal dentine exposure, inverse relief index, and inverse occlusal relief. The same measurements were calculated on macrowear series of four extant platyrrhine taxa (Alouatta, Ateles, Plecturocebus, and Sapajus apella) to provide an analogical framework for dietary inference in the fossil taxa. We predicted that Ae. zeuxis and Ap. phiomense would show similar patterns in topographic change with wear to one another and to extant platyrrhine frugivores like Ateles and Plecturocebus. The fossil taxa have similar distributions of convex Dirichlet normal energy to one another, and high amounts of concave Dirichlet normal energy 'noise' in unworn molars-a pattern shared with extant hominids that may distort dietary interpretations. Inverse relief index was the most useful wear proxy for comparison among the taxa in this study which possess disparate enamel thicknesses. Contrary to expectations, Ae. zeuxis and Ap. phiomense both resemble S. apella in exhibiting an initial decline in convex Dirichlet normal energy followed by an increase at the latest stages of wear as measured by inverse relief index, lending support to previous suggestions that hard-object feeding played a role in their dietary ecology. Based on these results and previous analyses of molar shearing quotients, microwear, and enamel microstructure, we suggest that Ae. zeuxis had a pitheciine-like strategy of seed predation, whereas Ap. phiomense potentially consumed berry-like compound fruits with hard seeds.Item Open Access Dietary inference from upper and lower molar morphology in platyrrhine primates.(PLoS One, 2015) Allen, Kari L; Cooke, Siobhán B; Gonzales, Lauren A; Kay, Richard FThe correlation between diet and dental topography is of importance to paleontologists seeking to diagnose ecological adaptations in extinct taxa. Although the subject is well represented in the literature, few studies directly compare methods or evaluate dietary signals conveyed by both upper and lower molars. Here, we address this gap in our knowledge by comparing the efficacy of three measures of functional morphology for classifying an ecologically diverse sample of thirteen medium- to large-bodied platyrrhines by diet category (e.g., folivore, frugivore, hard object feeder). We used Shearing Quotient (SQ), an index derived from linear measurements of molar cutting edges and two indices of crown surface topography, Occlusal Relief (OR) and Relief Index (RFI). Using SQ, OR, and RFI, individuals were then classified by dietary category using Discriminate Function Analysis. Both upper and lower molar variables produce high classification rates in assigning individuals to diet categories, but lower molars are consistently more successful. SQs yield the highest classification rates. RFI and OR generally perform above chance. Upper molar RFI has a success rate below the level of chance. Adding molar length enhances the discriminatory power for all variables. We conclude that upper molar SQs are useful for dietary reconstruction, especially when combined with body size information. Additionally, we find that among our sample of platyrrhines, SQ remains the strongest predictor of diet, while RFI is less useful at signaling dietary differences in absence of body size information. The study demonstrates new ways for inferring the diets of extinct platyrrhine primates when both upper and lower molars are available, or, for taxa known only from upper molars. The techniques are useful in reconstructing diet in stem representatives of anthropoid clade, who share key aspects of molar morphology with extant platyrrhines.Item Open Access Dietary quality and encephalization in platyrrhine primates.(Proc Biol Sci, 2012-02-22) Allen, Kari L; Kay, Richard FThe high energetic costs of building and maintaining large brains are thought to constrain encephalization. The 'expensive-tissue hypothesis' (ETH) proposes that primates (especially humans) overcame this constraint through reduction of another metabolically expensive tissue, the gastrointestinal tract. Small guts characterize animals specializing on easily digestible diets. Thus, the hypothesis may be tested via the relationship between brain size and diet quality. Platyrrhine primates present an interesting test case, as they are more variably encephalized than other extant primate clades (excluding Hominoidea). We find a high degree of phylogenetic signal in the data for diet quality, endocranial volume and body size. Controlling for phylogenetic effects, we find no significant correlation between relative diet quality and relative endocranial volume. Thus, diet quality fails to account for differences in platyrrhine encephalization. One taxon, in particular, Brachyteles, violates predictions made by ETH in having a large brain and low-quality diet. Dietary reconstructions of stem platyrrhines further indicate that a relatively high-quality diet was probably in place prior to increases in encephalization. Therefore, it is unlikely that a shift in diet quality was a primary constraint release for encephalization in platyrrhines and, by extrapolation, humans.Item Open Access Dust in the wind: How climate variables and volcanic dust affect rates of tooth wear in Central American howling monkeys.(Am J Phys Anthropol, 2016-02) Spradley, Jackson P; Glander, Kenneth E; Kay, Richard FOBJECTIVES: Two factors have been considered important contributors to tooth wear: dietary abrasives in plant foods themselves and mineral particles adhering to ingested food. Each factor limits the functional life of teeth. Cross-population studies of wear rates in a single species living in different habitats may point to the relative contributions of each factor. MATERIALS AND METHODS: We examine macroscopic dental wear in populations of Alouatta palliata (Gray, 1849) from Costa Rica (115 specimens), Panama (19), and Nicaragua (56). The sites differ in mean annual precipitation, with the Panamanian sites receiving more than twice the precipitation of those in Costa Rica or Nicaragua (∼3,500 mm vs. ∼1,500 mm). Additionally, many of the Nicaraguan specimens were collected downwind of active plinian volcanoes. Molar wear is expressed as the ratio of exposed dentin area to tooth area; premolar wear was scored using a ranking system. RESULTS: Despite substantial variation in environmental variables and the added presence of ash in some environments, molar wear rates do not differ significantly among the populations. Premolar wear, however, is greater in individuals collected downwind from active volcanoes compared with those living in environments that did not experience ash-fall. DISCUSSION: Volcanic ash seems to be an important contributor to anterior tooth wear but less so in molar wear. That wear is not found uniformly across the tooth row may be related to malformation in the premolars due to fluorosis. A surge of fluoride accompanying the volcanic ash may differentially affect the premolars as the molars fully mineralize early in the life of Alouatta.Item Open Access Endocranial volume and shape variation in early anthropoid evolution(2014) Allen, Kari LeighFossil taxa are crucial to studies of brain evolution, as they allow us to identify evolutionary trends in relative brain size and brain shape that may not otherwise be identifiable in comparative studies using only extant taxa, owing to multiple events of parallel encephalization among primate clades. This thesis combines indirect and direct approaches to understanding primate evolution, by evaluating variation in the endocranial morphology of extant primates and their fossil representatives. I use a comparative approach to examine the relationships between interspecific adult endocranial volume and shape, and brain evolution and cranial form among extant primate clades and their fossil representatives. The associations are evaluated via phylogenetically informed statistics perfomed on volumetric measurements and three-dimensional geometric morphometric analyses of virtual endocasts constructed from micro-CT scans of primate crania. Fossil taxa included in these analyses are: 1) anthropoids Parapithecus, Aegyptopithecus (Early Oligocene, Egypt), Homunculus and Tremacebus (Early Miocene, Argentina), and 2) Eocene euprimates Adapis and Leptadapis (Eocene adapoids, France), and the Rooneyia (Eocene omomyoid, Texas).
The first part of this work (Chapter 2) explores variation in residual mass of brain components (taken from the literature) among primates, and evaluates the correlated evolution of encephalization and brain proportions with endocast shape, quantified via three-dimensional geometric morphometric techniques. Analyses reveal a broad range of variation in endocast shape among primates. Endocast shape is influenced by a complex array of factors, including phylogeny, body size, encephalization, and brain proportions (residual mass of brain components). The analysis supports previous research, which concludes that anthropoids and tarsiers (Haplorhini) share the enlargement of several key brain regions including the neocortex and visual systems, and a reduction of the olfactory system. Anthropoids further differ from strepsirrhines in endocranial features associated with encephalization--a more flexed brain base, an inferiorly deflected olfactory fossa--and those associated with brain proportions--a small olfactory fossa, and a more caudally extended cerebrum that extends posteriorly past the cerebellar poles. Tarsiers are unique in having a mediolaterally broad and rostro-caudally short endocast with an attenuated anterior and middle cranial fossae. This morphology is likely related to the extreme orbital enlargement in this taxon, which limits anterior expansion of the endocranium. Finally, despite the correlation between residual endocranial volume and endocast shape among modern primates, early anthropoid fossils demonstrate a disconnect between these factors in sharing key features of endocast shape with extant anthropoids at a relatively small brain size.
The second part of this thesis (Chapter 3) explores the relationship between craniofacial organization--cranial base angle, facial size, facial hafting--and encephalization via the lens of the Spatial Constraints and Facial Packing Hypotheses. These hypotheses predict that interspecific adult variation in encephalization correlates with endocranial shape such that a larger brain for a given body size will be more "globular" or spherical in shape. These hypotheses futher predict that basicranial angle covaries with encephalization and that the relative size of the endocranium and facial skeleton will have an antagonistic effect on basicranial angle and facial hafting. Results show that various measures of globularity have inconsistent and weak relationships to phylogeny, encephalization, and basicranial flexion, owing to a diversity of clade-specific scaling patterns between the maximum length, breadth, and width of the endocast. Among extant primates, there is weak but significant evidence to suggest that both facial size and encephalization influence variation in basicranial flexion. Considering the fossil specimens in isolation, their relative ranks in encephalization, basicranial flexion, and midline facial size and shape follow the pattern expected from the Spatial and Facial Packing Hypotheses outlined above; however, relative to modern species, the early fossil anthropoids have more flexed cranial bases and shorter facial skeletons at much smaller level of encephalization than seen in modern anthropoids.
Together, the extant data suggest a moderately conserved pattern of correlated evolution among endocranial size, endocranial shape, brain proportions, and craniofacial organization, which may explain differences in endocranial and facial shape between extant strepsirrhine and anthropoid primates; however, the fossil record for early anthropoid evolution demonstrates that a shift towards key anthropoid-like traits of the endocranium, basicranium, and facial skeleton were initiated early in anthropoid evolution, with subsequent encephalization occurring within and among members of this clade. Thus, these anthropoid cranial traits evolved in tandem with changes in the relative size of brain components, rather than absolute or relative brain size alone. Basicranial flexion, facial length and orientation are influenced by both: 1) shifts in endocranial shape associated with changes in brain proportion--accounting for the initiation of the anthropoid-like craniofacial plan early in the evolution of the clade--and 2) encephalization, which influenced subsequent morphological divergence among extant anthropoid groups.
Item Open Access Evidence for an Asian origin of stem anthropoids.(Proc Natl Acad Sci U S A, 2012-06-26) Kay, Richard FItem Open Access Experimental Analyses of the Relationship Between Semicircular Canal Morphology and Locomotor Head Rotations in Primates(2010) Malinzak, Michael DavidReconstructing locomotor patterns from fossils is crucial for understanding the origins of primates and important transitions in various primate clades. Recent studies suggest that the semicircular canals of the inner ear provide evidence about locomotion. The canals sense rotational head accelerations and drive reflexes essential for normal movement. Because bony aspects of canal morphology influence canal sensitivity, this system can be studied in osteologic specimens and fossils. Variation in canal morphology in living and, by inference, extinct primates has been attributed to interspecific differences in locomotor behavior. However, the manner in which movement selects for canal morphology is debated, alternative scenarios are plausible, and no relevant measurements are available documenting head movements in primates.
To refine proposed links between canal morphology and locomotor function, and to resolve conflicting functional interpretations, this study examines head rotations in lemurs and lorises exhibiting diverse locomotor behaviors. Three-dimensional kinematic analyses were used to characterize angular velocities of the head during locomotion. These data are used to test hypotheses concerning intraspecific, interspecific, and body-size dependent variation in head rotations. Cranial CT scans are used to model canal sensitivity to rotations in different directions. Observed patterns of head rotation are compared to predicted patterns of sensitivity to test hypotheses about the relationship between locomotor behavior and canal design.
Evaluation of existing locomotor inferences reveals that brain size exerts a significant effect on canal size and that the prevailing equations for predicting agility from body and canal size are highly inaccurate. Intraspecific comparisons between maps of observed angular velocity and predicted sensitivity allow identification of map types associated with different general locomotor modes and do not support existing hypotheses about the primary selective forces acting on canal morphology. The new data are used to formulate and test a novel "fast-accurate hypothesis" to explain why all vertebrates are more sensitive to rotations about some axes than others. The fast-accurate hypothesis stipulates that angular velocities presented about axes of mean sensitivity are most accurately interpreted by the brain, and that selection aligns axes of mean sensitivity with axes of habitually fast rotation because accurate perception of rapid rotations confers survival benefit. The fast-accurate hypothesis was used to predict which features of the canals should be correlated with high mean angular velocities of head movement. Novel equations that predict behavior from these newly identified canal morphologies were generated and found to outperform existing equations when tested on the original sample of 11 strepsirrhine species.
Item Open Access First record of the Miocene hominoid Sivapithecus from Kutch, Gujarat state, western India.(PloS one, 2018-01) Bhandari, Ansuya; Kay, Richard F; Williams, Blythe A; Tiwari, Brahma Nand; Bajpai, Sunil; Hieronymus, TobinHominoid remains from Miocene deposits in India and Pakistan have played a pivotal role in understanding the evolution of great apes and humans since they were first described in the 19th Century. We describe here a hominoid maxillary fragment preserving the canine and cheek teeth collected in 2011 from the Kutch (= Kachchh) basin in the Kutch district, Gujarat state, western India. A basal Late Miocene age is proposed based on the associated faunal assemblage that includes Hipparion and other age-diagnostic mammalian taxa. Miocene Hominoidea are known previously from several areas of the Siwalik Group in the outer western Himalayas of India, Pakistan, and Nepal. This is the first record of a hominoid from the Neogene of the Kutch Basin and represents a significant southern range extension of Miocene hominoids in the Indian peninsula. The specimen is assigned to the Genus Sivapithecus, species unspecified.Item Open Access Internal carotid arterial canal size and scaling in Euarchonta: Re-assessing implications for arterial patency and phylogenetic relationships in early fossil primates.(J Hum Evol, 2016-08) Boyer, Doug M; Kirk, E Christopher; Silcox, Mary T; Gunnell, Gregg F; Gilbert, Christopher C; Yapuncich, Gabriel S; Allen, Kari L; Welch, Emma; Bloch, Jonathan I; Gonzales, Lauren A; Kay, Richard F; Seiffert, Erik RPrimate species typically differ from other mammals in having bony canals that enclose the branches of the internal carotid artery (ICA) as they pass through the middle ear. The presence and relative size of these canals varies among major primate clades. As a result, differences in the anatomy of the canals for the promontorial and stapedial branches of the ICA have been cited as evidence of either haplorhine or strepsirrhine affinities among otherwise enigmatic early fossil euprimates. Here we use micro X-ray computed tomography to compile the largest quantitative dataset on ICA canal sizes. The data suggest greater variation of the ICA canals within some groups than has been previously appreciated. For example, Lepilemur and Avahi differ from most other lemuriforms in having a larger promontorial canal than stapedial canal. Furthermore, various lemurids are intraspecifically variable in relative canal size, with the promontorial canal being larger than the stapedial canal in some individuals but not others. In species where the promontorial artery supplies the brain with blood, the size of the promontorial canal is significantly correlated with endocranial volume (ECV). Among species with alternate routes of encephalic blood supply, the promontorial canal is highly reduced relative to ECV, and correlated with both ECV and cranium size. Ancestral state reconstructions incorporating data from fossils suggest that the last common ancestor of living primates had promontorial and stapedial canals that were similar to each other in size and large relative to ECV. We conclude that the plesiomorphic condition for crown primates is to have a patent promontorial artery supplying the brain and a patent stapedial artery for various non-encephalic structures. This inferred ancestral condition is exhibited by treeshrews and most early fossil euprimates, while extant primates exhibit reduction in one canal or another. The only early fossils deviating from this plesiomorphic condition are Adapis parisiensis with a reduced promontorial canal, and Rooneyia and Mahgarita with reduced stapedial canals.Item Open Access Intra and Interspecific Variation in Semicircular Canal Morphology in Primates and Implications for Locomotor Behavior Reconstruction Models(2015) Gonzales, Lauren AnnThe semicircular canals of the vestibular system detect angular head rotations and play a fundamental role in guiding motor reflexes during locomotor behaviors. While extensive research has documented the relationship between the semicircular canal shape (i.e. radius of curvature and canal length) and locomotor behaviors, levels of intraspecific variation in primates are relatively unknown. Predictive models using these metrics to reconstruct locomotion in extinct animals are generally based on one individual per species. Furthermore, the influence of body size and to a lesser degree brain size heavily influences overall canal morphology.
This study documents intraspecific variation in the size, shape and orientation of the semicircular canals in relation to changes in function, brain size, and body size via analysis of high resolution CT scans of large samples of extant primate species. I test the hypothesis that the extent of intraspecific variation differs across a sample of primates, reflecting the intensity of selective pressure on canal shape in species that require agility during locomotion. I also examine whether spatial constraints resulting from the size of the skull (reflected by the size of the brain) affect canal radii of curvature and canal orthogonality more strongly than observed agility during locomotion.
To this end, data was gathered from high-resolution CT images of museum specimens. For the comparative analysis, 14-matched pairs of adult extant primate species were selected that contrast in agility and brain size in closely related genera. CT images of these specimens were used to measure functional measures of canal sensitivity (e.g., canal radii of curvature, orthogonality). This data was used to test hypotheses concerning intraspecific and interspecific variation in semicircular canal functional morphology. This data was then combined with a larger mammalian dataset culled from the literature, to further test hypotheses relating to body-size and brain size dependent variation in individual canal metrics.
Evaluation of levels of intraspecific variation support the hypothesis put forth by Billet et al. (2012), that selection on canal morphology is relaxed in animals with slow locomotor behaviors, who are observed to have higher levels of intraspecific variation. Analyses of interspecific variation provides tentative support for the use of canal orthogonality in reconstructive models, most especially in canal angles that seem least effected by other constraints—brain size, etc. However, locomotor signals are complex and brain/skull interactions can potentially produce misleading results when reconstructing locomotor behaviors. This work highlights the importance of critically assessing comparative groups used for inferring behaviors in both extinct and extant animals.
Item Open Access Intraspecific variation in semicircular canal morphology-A missing element in adaptive scenarios?(American journal of physical anthropology, 2019-01) Gonzales, Lauren A; Malinzak, Michael D; Kay, Richard FOBJECTIVES:Recent evidence suggests that the amount of intraspecific variation in semicircular canal morphology may, itself, be evidence for varying levels of selection related to locomotor demands. To determine the extent of this phenomenon across taxa, we expand upon previous work by examining intraspecific variation in canal radii and canal orthogonality in a broad sample of strepsirrhine and platyrrhine primates. Patterns of interspecific variation are re-examined in light of intraspecific variation to better understand the resolution at which locomotion can be reconstructed from single individuals. MATERIALS AND METHODS:Data was collected from high-resolution CT scans of 14 size-matched, related species. Six of these taxa have existing data on rotational head speeds. RESULTS:The level of intraspecific variation was found to differ in strepsirrhine and in platyrrhine species pairs, with larger ranges of variation generally observed for the slower moving taxon than the faster moving one. Taxa that are classified as relatively agile can to some extent be separated from those who are slower-moving, but only when comparing similarly sized, closely related species with more extreme forms of locomotion. DISCUSSION:Our findings agree with previous research showing that canal intraspecific variation can fluctuate according to species-specific locomotor behavior and extends this further by identifying behaviors that may be under unusual selective pressure. It also demonstrates the complexity of interpreting inner ear morphology in the context of broadly applicable locomotor "categories" of the kind commonly used in behavioral studies. We suspect that simplified models predicting vestibular sensitivity may be unable to differentiate behaviors when only a single specimen is available.Item Open Access Locomotor head movements and semicircular canal morphology in primates.(Proc Natl Acad Sci U S A, 2012-10-30) Malinzak, Michael D; Kay, Richard F; Hullar, Timothy EAnimal locomotion causes head rotations, which are detected by the semicircular canals of the inner ear. Morphologic features of the canals influence rotational sensitivity, and so it is hypothesized that locomotion and canal morphology are functionally related. Most prior research has compared subjective assessments of animal "agility" with a single determinant of rotational sensitivity: the mean canal radius of curvature (R). In fact, the paired variables of R and body mass are correlated with agility and have been used to infer locomotion in extinct species. To refine models of canal functional morphology and to improve locomotor inferences for extinct species, we compare 3D vector measurements of head rotation during locomotion with 3D vector measures of canal sensitivity. Contrary to the predictions of conventional models that are based upon R, we find that axes of rapid head rotation are not aligned with axes of either high or low sensitivity. Instead, animals with fast head rotations have similar sensitivities in all directions, which they achieve by orienting the three canals of each ear orthogonally (i.e., along planes at 90° angles to one another). The extent to which the canal configuration approaches orthogonality is correlated with rotational head speed independent of body mass and phylogeny, whereas R is not.Item Open Access New World monkey origins(SCIENCE, 2015-03-06) Kay, Richard FItem Open Access Parvimico materdei gen. et sp. nov.: A new platyrrhine from the Early Miocene of the Amazon Basin, Peru.(Journal of human evolution, 2019-09) Kay, Richard F; Gonzales, Lauren A; Salenbien, Wout; Martinez, Jean-Noël; Cooke, Siobhán B; Valdivia, Luis Angel; Rigsby, Catherine; Baker, Paul AThree field seasons of exploration along the Río Alto Madre de Dios in Peruvian Amazonia have yielded a fauna of micromammals from a new locality AMD-45, at ∼12.8°S. So far we have identified the new primate described here as well as small caviomorph rodents, cenolestoid marsupials, interatheriid notoungulates, xenarthrans, fish, lizards and invertebrates. The site is in the Bala Formation as exposed where the river transects a syncline. U-Pb dates on detrital zircons constrain the locality's age at between 17.1 ± 0.7 Ma and 18.9 ± 0.7 Ma, making the fauna age-equivalent to that from the Pinturas Formation and the older parts of the Santa Cruz Formation of Patagonian Argentina (Santacrucian). The primate specimen is an unworn M1 of exceptionally small size (equivalent in size to the extant callitrichine, Callithrix jacchus, among the smallest living platyrrhines and the smallest Eocene-Early Miocene platyrrhine yet recorded). Despite its small size it is unlike extant callitrichines in having a prominent cingulum hypocone. Based on the moderate development of the buccal crests, this animal likely had a diet similar to that of frugivorous callitrichines, and distinctly different from the more similarly-sized gummivores, Cebuella and C. jacchus. The phyletic position of the new taxon is uncertain, especially given the autapomorphic character of the tooth as a whole. Nevertheless, its unusual morphology hints at a wholly original and hitherto unknown Amazonian fauna, and reinforces the impression of the geographic separation of the Amazonian tropics from the more geographically isolated southerly parts of the continent in Early Miocene times.