Browsing by Author "Kelsoe, G"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Open Access Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2.(J Exp Med, 2000-11-06) Chen, Z; Koralov, SB; Kelsoe, GThe complement system enhances antibody responses to T-dependent antigens, but paradoxically, deficiencies in C1 and C4 are strongly linked to autoantibody production in humans. In mice, disruption of the C1qa gene also results in spontaneous autoimmunity. Moreover, deficiencies in C4 or complement receptors 1 and 2 (CR1/CR2) lead to reduced selection against autoreactive B cells and impaired humoral responses. These observations suggest that C1 and C4 act through CR1/CR2 to enhance humoral immunity and somehow suppress autoimmunity. Here we report high titers of spontaneous antinuclear antibody (ANA) in C4(-/)- mice. This systemic lupus erythematosus-like autoimmunity is highly penetrant; by 10 mo of age, all C4(-)(/)- females and most males produced ANA. In contrast, titers and frequencies of ANA in Cr2(-)(/)- mice, which are deficient in CR1 and CR2, never rose significantly above those in normal controls. Glomerular deposition of immune complexes (ICs), glomerulonephritis, and splenomegaly were observed in C4(-)(/)- but not Cr2(-)(/)- mice. C4(-)(/)-, but not Cr2(-)(/)-, mice accumulate activated T and B cells. Clearance of circulating ICs is impaired in preautoimmune C4(-)(/)-, but not Cr2(-)(/)-, mice. C4 deficiency causes spontaneous, lupus-like autoimmunity through a mechanism that is independent of CR1/CR2.Item Open Access Genotypic analysis of B cell colonies by in situ hybridization. Stoichiometric expression of three VH families in adult C57BL/6 and BALB/c mice.(J Exp Med, 1987-07-01) Schulze, DH; Kelsoe, GThe filter paper disc method for cloning inducible lymphocytes was used to census the splenic B cell population of C57BL/6 and BALB/c mice for the expression of three VH gene-families, VH X-24, -Q52, and -J558. B cell colonies, arising from single founder lymphocytes, were identified by in situ hybridization with VH family- and C mu-specific cDNA probes. Some 6.7 X 10(4) C mu+ colonies were screened. Among C57BL/6- or BALB/c-derived colonies, approximately 3% were VH X-24+, approximately 19% were VH Q52+, and approximately 54% were VH J558+. These frequencies are consistent with a process of equiprobable expression for individual VH segments, and provide direct evidence that normal splenic B lymphocytes use a process of random genetic combinatorics to generate the antibody repertoire.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations.(J Exp Med, 1991-05-01) Jacob, J; Kassir, R; Kelsoe, GAfter primary immunization with an immunogenic conjugate of (4-hydroxy-3-nitrophenyl)acetyl, two anatomically and phenotypically distinct populations of antibody-forming cells arise in the spleen. As early as 2 d after immunization, foci of antigen-binding B cells are observed along the periphery of the periarteriolar lymphoid sheaths. These foci expand, occupying as much as 1% of the splenic volume by day 8 of the response. Later, foci grow smaller and are virtually absent from the spleen by day 14. A second responding population, germinal center B cells, appear on day 8-10 and persist at least until day 16 post-immunization. Individual foci and germinal centers represent discrete pauciclonal populations that apparently undergo somatic evolution in the course of the primary response. We suggest that foci may represent regions of predominantly interclonal competition for antigen among unmutated B cells, while germinal centers are sites of intraclonal clonal competition between mutated sister lymphocytes.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers.(J Exp Med, 1992-09-01) Jacob, J; Kelsoe, GIn the genetically restricted response that follows immunization with (4-hydroxy-3-nitrophenyl)acetyl coupled to protein carriers, two distinct populations of B cells are observed in the spleens of C57BL/6 mice. By 48 h postimmunization, foci of antigen-binding B cells appear along the periphery of the periarteriolar lymphoid sheaths. These foci expand to contain large numbers of antibody-forming cells that neither bind the lectin, peanut agglutinin, nor mutate the rearranged immunoglobulin variable region loci. Germinal centers containing peanut agglutinin-positive B cells can be observed by 96-120 h after immunization. Although specific for the immunizing hapten, these B cells do not produce substantial amounts of antibody, but are the population that undergoes somatic hypermutation and affinity-driven selection. Both focus and germinal center populations are pauciclonal, founded, on average, by three or fewer B lymphocytes. Despite the highly specialized roles of the focus (early antibody production) and germinal center (higher affinity memory cells) B cell populations, analysis of VH to D to JH joins in neighboring foci and germinal centers demonstrate that these B cell populations have a common clonal origin.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells.(J Exp Med, 1993-10-01) Jacob, J; Przylepa, J; Miller, C; Kelsoe, GIn the murine spleen, germinal centers are the anatomic sites for antigen-driven hypermutation and selection of immunoglobulin (Ig) genes. To detail the kinetics of Ig mutation and selection, 178 VDJ sequences from 16 antigen-induced germinal centers were analyzed. Although germinal centers appeared by day 4, mutation was not observed in germinal center B cells until day 8 postimmunization; thereafter, point mutations favoring asymmetrical transversions accumulated until day 14. During this period, strong phenotypic selection on the mutant B lymphocytes was inferred from progressively biased distributions of mutations within the Ig variable region, the loss of crippling mutations, decreased relative clonal diversity, and increasingly restricted use of canonical gene segments. The period of most intense selection on germinal center B cell populations preceded significant levels of mutation and may represent a physiologically determined restriction on B cells permitted to enter the memory pathway. Noncanonical Ig genes recovered from germinal centers were mostly unmutated although they probably came from antigen-reactive cells. Together, these observations demonstrate that the germinal center microenvironment is rich and temporally complex but may not be constitutive for somatic hypermutation.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. IV. Affinity-dependent, antigen-driven B cell apoptosis in germinal centers as a mechanism for maintaining self-tolerance.(J Exp Med, 1995-12-01) Han, S; Zheng, B; Dal Porto, J; Kelsoe, GGerminal centers (GCs) are the sites of antigen-driven V(D)J gene hypermutation and selection necessary for the generation of high affinity memory B lymphocytes. Despite the antigen dependence of this reaction, injection of soluble antigen during an established primary immune response induces massive apoptotic death in GC B cells, but not in clonally related populations of nonfollicular B lymphoblasts and plasmacytes. Cell death in GCs occurs predominantly among light zone centrocytes, is antigen specific, and peaks within 4-8 h after injection. Antigen-induced programmed death does not involve cellular interactions mediated by CD40 ligand (CD40L) or Fas; disruption of GCs by antibody specific for CD40L was not driven by apoptosis and C57BL/6.lpr mice, though unable to express the Fas death trigger, remained fully susceptible to soluble antigen. Single injections of antigen did not significantly decrease GC numbers or average size, but repeated injections during an 18-h period resulted in fewer and substantially smaller GCs. As cell loss appeared most extensive in the light zone, decreased GC cellularity after prolonged exposure to soluble antigen implies that the Ig- centroblasts of the dark zone may require replenishment from light zone cells that have survived antigenic selection. GC cell death is avidity-dependent; oligovalent antigen induced relatively little apoptosis and GC B cells that survived long exposures to multivalent antigen expressed atypical VDJ rearrangements unlikely to encode high affinity antibody. Antigen-induced apoptotic death in GCs may represent a mechanism for the peripheral deletion of autoreactive B cell mutants much as the combinatorial repertoire of immature B lymphocytes is censored in the bone marrow.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection.(J Exp Med, 1998-03-16) Takahashi, Y; Dutta, PR; Cerasoli, DM; Kelsoe, GTo examine the role of germinal centers (GCs) in the generation and selection of high affinity antibody-forming cells (AFCs), we have analyzed the average affinity of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific AFCs and serum antibodies both during and after the GC phase of the immune response. In addition, the genetics of NP-binding AFCs were followed to monitor the generation and selection of high affinity AFCs at the clonal level. NP-binding AFCs gradually accumulate in bone marrow (BM) after immunization and BM becomes the predominant locale of specific AFCs in the late primary response. Although the average affinity of NP-specific BM AFCs rapidly increased while GCs were present (GC phase), the affinity of both BM AFCs and serum antibodies continued to increase even after GCs waned (post-GC phase). Affinity maturation in the post-GC phase was also reflected in a shift in the distribution of somatic mutations as well as in the CDR3 sequences of BM AFC antibody heavy chain genes. Disruption of GCs by injection of antibody specific for CD154 (CD40 ligand) decreased the average affinity of subsequent BM AFCs, suggesting that GCs generate the precursors of high affinity BM AFCs; inhibition of CD154-dependent cellular interactions after the GC reaction was complete had no effect on high affinity BM AFCs. Interestingly, limited affinity maturation in the BM AFC compartment still occurs during the late primary response even after treatment with anti-CD154 antibody. Thus, GCs are necessary for the generation of high affinity AFC precursors but are not the only sites for the affinity-driven clonal selection responsible for the maturation of humoral immune responses.Item Open Access Murine V kappa gene expression does not follow the VH paradigm.(J Exp Med, 1989-05-01) Kaushik, A; Schulze, DH; Bona, C; Kelsoe, GV kappa gene family expression among LPS-reactive murine B lymphocytes, unlike that of VH gene families, is not proportional to genomic complexity, i.e., nonstoichiometric. Furthermore, no positional bias for the overexpression of J-proximal V kappa genes (V kappa 21) is observed among neonatal B lymphocytes. Yet, the V kappa 1 and V kappa 9 families located in the center of V kappa locus are preferentially used by neonatal B splenocytes. Thus, the mechanisms of V kappa gene rearrangement and expression appear to differ significantly from those controlling the VH locus.Item Open Access Relaxed negative selection in germinal centers and impaired affinity maturation in bcl-xL transgenic mice.(J Exp Med, 1999-08-02) Takahashi, Y; Cerasoli, DM; Dal Porto, JM; Shimoda, M; Freund, R; Fang, W; Telander, DG; Malvey, EN; Mueller, DL; Behrens, TW; Kelsoe, GThe role of apoptosis in affinity maturation was investigated by determining the affinity of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific antibody-forming cells (AFCs) and serum antibody in transgenic mice that overexpress a suppressor of apoptosis, Bcl-xL, in the B cell compartment. Although transgenic animals briefly expressed higher numbers of splenic AFCs after immunization, the bcl-xL transgene did not increase the number or size of germinal centers (GCs), alter the levels of serum antibody, or change the frequency of NP-specific, long-lived AFCs. Nonetheless, the bcl-xL transgene product, in addition to endogenous Bcl-xL, reduced apoptosis in GC B cells and resulted in the expansion of B lymphocytes bearing VDJ rearrangements that are usually rare in primary anti-NP responses. Long-lived AFCs bearing these noncanonical rearrangements were frequent in the bone marrow and secreted immunoglobulin G(1) antibodies with low affinity for NP. The abundance of noncanonical cells lowered the average affinity of long-lived AFCs and serum antibody, demonstrating that Bcl-xL and apoptosis influence clonal selection/maintenance for affinity maturation.Item Open Access T helper cells in murine germinal centers are antigen-specific emigrants that downregulate Thy-1.(J Exp Med, 1996-09-01) Zheng, B; Han, S; Kelsoe, GAfter immunization, activated splenic T cells proliferate in periarteriolar lymphoid sheaths (PALS) and subsequently migrate to the lymphoid follicle where they enter nascent germinal centers. Analysis of TCR V(D)J gene rearrangements indicates extensive emigration, frequently involving more than a single white pulp region. These migrants constitute a unique set of T helper cells that express antigen-specific alpha beta TCR, CD3, and CD4, but little or no Thy-1, a differentiation antigen present on the great majority of peripheral murine T lymphocytes. The origin of CD4+ Thy-1 follicular T cells appears to be the Thy+ population in the PALS, as both sets commonly share identical V(D)J rearrangements.Item Open Access Thymic requirement for cyclical idiotypic and reciprocal anti-idiotypic immune responses to a T-independent antigen.(J Exp Med, 1980-02-01) Kelsoe, G; Isaak, D; Cerny, JThe role of the thymus in the cyclical appearance of the dominant idiotype of the myeloma protein secreted by the TEPC-15 plasmacytoma (T-15)-bearing plaque-forming cells (PFC) and anti-idiotypic cells (i.e., cells with receptors for T-15) in the spleen during a primary response to the phosphorylcholine determinant of Streptococcus pneumoniae, strain R36a (Pn) was studied using normal mice, thymus-deficient nude mice, and thymus gland-grafted nude mice (TG-nude). The nude mice and their phenotypically normal littermates (LM) were backcrossed on the BALB/c genetic background. The kinetics of the anti-Pn PFC response of BALB/c inbred mice, littermates of nude mice, and TG-nude mice were essentially the same. There was an initial peak on day 5-6 followed by a decline to near background, and then a second peak on day 12. In nude mice, the first peak of anti-Pn PFC (day 5) was comparable in magnitude to that of mice with an intact thymus; however, there was no second peak. In contrast to the cellular response measured at the level of PFC, the serum antibody response to Pn (assayed by passive hemagglutination of sheep erythrocytes coated with Pn polysaccharide) was comparable in all groups of mice and did not show a measurable oscillation. The anti-idiotypic cellular activity was determined by the ability of spleen cells to bind radiolabeled (125I) TEPC-15 myeloma protein (IgA, kappa) which carries an idiotypic determinant indistinguishable from that of most anti-phosphorylcholine antibodies in BALB/c mice. Binding of radiolabeled McPC-603 (IgA, kappa) and MOPC-315 (IgA, lambda 2) myeloma proteins (which lack the T-15 idiotypic determinant) served as controls. The changes in T-15 binding by splenic lymphocytes following the Pn immunization differed between normal and athymic mice. BALB/c, LM, and TG-nude mice showed a biphasic pattern with peaks at days 3--4 and 10--11 that was nearly reciprocal to the PFC curve. On the other hand, T-15 binding in nude mice either declined and remained depressed or was not affected by the ongoing anti-Pn response. These observations demonstrate that mature T cells are required for cyclical idiotypic and anti-idiotypic responses to immunization with a T-independent antigen and suggest that the cyclical immune response may result from an interaction between idiotypic and anti-idiotypic cell clones.