Browsing by Author "Khlystov, Andrey"
Results Per Page
Sort Options
Item Open Access A method of assessing air toxics concentrations in urban areas using mobile platform measurements.(J Air Waste Manag Assoc, 2007-11) Isakov, Vlad; Touma, Jawad S; Khlystov, AndreyThe objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxics assessments in Environmental Justice applications, epidemiological studies, and environmental health risk assessments. In this study, we developed and applied a method to characterize air toxics concentrations in urban areas using results of the recently conducted field study in Wilmington, DE. Mobile measurements were collected over a 4- x 4-km area of downtown Wilmington for three components: formaldehyde (representative of volatile organic compounds and also photochemically reactive pollutants), aerosol size distribution (representing fine particulate matter), and water-soluble hexavalent chromium (representative of toxic metals). These measurements were,used to construct spatial and temporal distributions of air toxics in the area that show a very strong temporal variability, both diurnally and seasonally. An analysis of spatial variability indicates that all pollutants varied significantly by location, which suggests potential impact of local sources. From the comparison with measurements at the central monitoring site, we conclude that formaldehyde and fine particulates show a positive correlation with temperature, which could also be the reason that photochemically generated formaldehyde and fine particulates over the study area correlate well with the fine particulate matter measured at the central site.Item Open Access An on-line instrument for mobile measurements of the spatial variability of hexavalent and trivalent chromium in urban air(ATMOSPHERIC ENVIRONMENT, 2006) Khlystov, Andrey; Ma, YilinThe Steam-Jet Aerosol Collector-long Pathlength Absorbance Spectroscopy (SJAC-LPAS), an on-line continuous instrument for mobile measurements of spatial distribution of water-soluble hexavalent and trivalent chromium in ambient aerosols, has been developed and is presented here. The system collects particles with the SJAC and analyzes the collected sample on-line using the diphenycarbazide (DPC) colorimetric method. By using a Teflon AF (Amorphous Fluoropolymer) liquid core wave guide, the limit of detection has been significantly improved, allowing on-line measurements at ambient concentrations. The limit of detection for Cr(VI) is 0.2 ng m(-3). Water-soluble Cr(III) can also be measured by oxidizing it to Cr(VI) in a parallel line using hydrogen peroxide before the detection with the DPC method. The concentration of Cr(III) is then determined as the difference between the two lines (Cr(VI) and Cr(VI) plus Cr(III)). The instrument was specifically designed to be used on a mobile platform to study spatial distribution of the pollutant within a city on a scale of 100 m. Special attention was given to the time resolution and the stability of the instrument performance under driving conditions. The time resolution of the instrument is 15 s. At a typical driving speed of 30 km h(-1) the instrument can detect variations in chromium concentration ({''}hot spots{''}) on the scale of about 150 m. The instrument has proven to operate reliably and capture temporal and spatial variability of Cr(VI) concentration during four mobile measurement campaigns in Wilmington, DE. (c) 2006 Elsevier Ltd. All rights reserved.Item Open Access Experimental Investigation of Thermodynamic and Kinetic Properties of Semi-volatile Organic Aerosols(2010) Saleh, RawadWe have developed and applied novel experimental techniques for determination of thermodynamic and kinetic properties of semi-volatile organic aerosols. The thermodynamic properties investigated were the saturation pressure, enthalpy of vaporization and activity coefficient, and the kinetic property was the evaporation coefficient.
The thermodynamic properties were determined using the integrated volume method (IVM), which relies on measurements of aerosol particle concentrations at different thermodynamic equilibrium states. The measured decrease in particle concentration upon heating in a flow tube, a thermodenuder, can be correlated with saturation pressure and enthalpy of vaporization via the IVM equation, which was derived from fundamental principles, namely the Clausius-Clapeyron relation, mass conservation, and ideal gas law. The main advantage of the IVM over other methods reported in the literature is that the other methods use kinetic-based techniques to measure thermodynamic properties which requires assumptions on the usually unknown evaporation coefficient; the IVM, on the other hand, is equilibrium-based and thus requires no assumption on the evaporation coefficient. We have applied the IVM to C-4, -6, -7, and -9 dicarboxylic acid aerosols, which are pertinent to atmospheric secondary organic aerosols. Saturation pressure and enthalpy of vaporization values obtained for these compounds were respectively 3.7E-4 Pa and 88 kJ/mol, 3.4E-5 Pa and 135 kJ/mol, 7.2E-5 Pa and 149 kJ/mol, and 1.4E-5 Pa and 145 kJ/mol.
The IVM was also used to determine activity coefficients of individual compounds in binary mixtures as a function of their mole fractions. We demonstrated this method using the following four model systems. System 1: adipic acid - pimelic acid, which illustrated polar organic - polar organic interactions. Non-ideal behavior was observed with activity coefficients around three at infinite dilution. System 2: adipic acid - dioctyl sebacate, which illustrated polar organic - non-polar organic interactions. The compounds in this experiment did not form a solution. System 3: adipic acid - ammonium sulfate, which illustrates polar organic - inorganic interactions. The compounds in this experiment did not form a solution. System 4: adipic acid - ambient extracts, which illustrated the potential use of the method to study partitioning behavior of individual components in a complex matrix approximating that of real ambient aerosol. The measured activity coefficient of adipic acid was less than unity for the tested range of mixing ratios, indicating suppression of volatility of this compound in ambient organic matrix.
We have investigated three controversial issues associated with the IVM as well as other methods which utilize thermodenuders and/or aerosol generation by spray atomization and drying: 1) equilibration time scales in thermodenuders, 2) the need of an activated carbon (AC) denuder in the cooling section, and 3) the effect of residual solvent on measured thermodynamic properties of aerosols generated by spray atomization and drying. Both numerical simulations and experiments showed that the aerosols approached equilibrium within reasonable residence times (15 s - 30 s) for aerosol size distributions typical for laboratory measurements. We have also performed dimensional analysis on the problem of equilibration in TDs, and derived a dimensionless equilibration parameter which can be used to determine the residence time needed for an aerosol of given sized distribution and kinetic properties to approach equilibrium. Using both model simulations and experiments, we have shown that with aerosol size distributions relevant to both ambient and laboratory measurements re-condensation in the cooling section, with and without an AC denuder, was negligible. Thus, there is no significant benefit in using an AC denuder in the cooling section. To investigate the effect of residual solvent on measured thermodynamic properties, we compared measurements of saturation pressure and enthalpy of vaporization of C-6 (adipic) and C-9 (azelaic) dicarboxylic acid aerosols generated by atomization of aqueous solutions to those generated by homogeneous condensation using a modified Sinclair - La Mer generator. We found no statistically significant difference between the tested aerosol generation methods, indicating that residual solvent carried by the particles had no impact on the measurements.
To determine the evaporation coefficient, we developed the integrated volume - tandem differential mobility analysis (IV-TDMA) method. This thermodenuder-based method allows separate determination of the three parameters governing aerosol evaporation, namely, saturation pressure, surface free energy, and evaporation coefficient. Saturation pressure was determined using the IVM, while evaporation coefficient and surface free energy were determined by fitting particle evaporation rates measured under non-equilibrium conditions to a numerical model of the evaporation process. Evaporation coefficient was determined in a size range where surface free energy effects were negligible, allowing for single parameter optimization. We obtained evaporation coefficient and surface free energy values of 0.07 and 0.15 J/m2, 0.08 and 0.17 J/m2 and 0.24 and 0.23 J/m2 for C-4, -6, and -7 dicarboxylic acids, respectively.
Item Open Access Intercomparison of aerosol spectrometers for ambient air monitoring(AEROSOL SCIENCE AND TECHNOLOGY, 2002) Mirme, Aadu; Kreyling, Wolfgang G; Khlystov, Andrey; Brink, Harry ten; Ruuskanen, Juhani; Tuch, Thomas; Pekkanen, JuhaThree aerosol spectrometers measuring the number concentration distribution of particles in the diameter range 0.01 to 2.5 mum were compared by running them side-by-side for 385 h under ambient air conditions in Erfurt, Germany in October 1997. From the spectral data the measured hourly number concentrations in 3 size fractions, the ultrafine fraction (0.01-0.1 mum), the accumulation fraction (0.1-0.5 mum), and the coarse fraction (0.5-2.5 mum), were analyzed. The systematic component of the difference between the instruments was assessed as the geometric mean of the ratio of the measured concentrations (GMR) and the random component as the geometric standard deviation of this ratio (GSR). Previous statistical methods to compare instruments were developed further. A nonlinear multivariate regression method was used to compare the aerosol distribution consisting of several size fractions. Also, the imprecision of the individual instruments (GSI) was estimated. Comparing the instruments within the ultrafine and accumulation fractions, both the GMRs and GSRs ranged between 1.06 and 1.23 and correlations were above 0.98. In the coarse fraction, the GMR of the number concentrations ranged between 0.25 and 4.19, the GSRs between 1.81 and 2.61, and the correlations between 0.72 and 0.85. The GSIs of the instruments were below 1.2 for all fractions but the coarse fraction. To explore possible differences in the classification of particles into the accumulation and coarse fractions, coarse fractions were regressed with the coarse and the accumulation fractions of the other instruments. Using a conversion based on this regression, the GSRs between instruments were minimized to 1.35 and the GSI to below 1.3. In conclusion, the aerosol spectrometers were in good agreement in the ultrafine and accumulation size fractions. The differences in the measured number concentrations in the coarse fraction were effectively corrected by using a regression method taking into account also the concentration in accumulation fraction, which suggests possible differences in particle sizing at 0.5 mum.Item Open Access Light scattering by fine particles during the Pittsburgh Air Quality Study: measurements and modeling(JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004) Cabada, Juan C; Khlystov, Andrey; Wittig, Ann E; Pilinis, Christodoulos; Pandis, Spyros N{[}1] Light scattering by fine particulate matter was measured during the Pittsburgh Air Quality Study (PAQS) as close to ambient conditions as possible. Several approaches are used for the theoretical calculation of the scattering coefficient and the results are compared to the direct measurements. The first approach uses ambient high time and daily resolved PM2.5 composition concentrations to estimate the scattering coefficient assuming that the aerosol is an external mixture. The second approach uses a thermodynamic model and Mie theory to predict the scattering coefficient of aerosols from daily size composition distributions. The third approach introduces high time and daily resolved ambient aerosol water concentrations and concentrations of sulfate, nitrate, organic material, and soil with fixed scattering efficiencies. During the summer the first two approaches underestimate the measured scattering coefficient by around 20\%. Agreement within experimental error is obtained between the measured scattering coefficient and the model, incorporating measured water aerosol concentrations. During the winter the first two approaches tend to overpredict the measured scattering by around 15\%. This overprediction is weakly correlated to the organic mass. The modeling approaches suggest that sulfate and the associated water contribute 65 - 73\% to the scattering coefficient during the summer, with organic material contributing 25 - 30\%. During the winter, sulfate accounts for 35 - 43\%, nitrate accounts for 24 - 32\%, and organic material accounts for 30 - 40\% of the scattering coefficient.Item Open Access Mass balance closure and the federal reference method for PM2.5 in Pittsburgh, Pennsylvania(ATMOSPHERIC ENVIRONMENT, 2004) Rees, Sarah L; Robinson, Allen L; Khlystov, Andrey; Stanier, Charles O; Pandis, Spyros NDaily ambient aerosol samples were taken in Pittsburgh, Pennsylvania from the summer 2001 to the winter 2002 as part of the Pittsburgh Air Quality Study (PAQS). The study measured PM2.5 mass by the Federal Reference Method (FRM) and the PM2.5 chemical composition by a variety of filter-based and continuous instruments. This paper examines the mass balance between the FRM-measured mass and the sum of the aerosol chemical components. For the 7-month study period, the average FRM-measured mass is 11\% greater than the sum of the mass of the aerosol chemical components. This mass balance discrepancy varies seasonally, with the average FRM-measured mass 17\% greater than the sum of the chemical components for the summer months, with discrepancies as large as 30\% during certain periods. Meanwhile, the FRM-measured mass was at or slightly below the sum of the chemical components for the winter months. The mass balance discrepancy and its seasonal shift cannot be explained by measurement uncertainty; instead the discrepancy is due to combination of retained aerosol water on the conditioned FRM filters and volatilization losses. The relative importance of these different effects varies with aerosol composition and causes the observed seasonal variation in the mass balance. The contribution of the aerosol water to the FRM-measured mass is estimated using continuous measurements of aerosol water at the site; volatilization losses are estimated from other filter-based instruments. Water contributes 16\% of the FRM mass in the summer, and 8\% of the FRM mass in the winter; it also appears responsible for episodes where the FRM-measured mass is significantly greater than the sum of components. Retention of water is greatest during acidic conditions, which commonly occur during the summer months. Volatilization losses are estimated at 5\% of the FRM mass during the summer, and 9\% for the winter. Volatilization losses appear to be most significant on days dominated by organic aerosol, or winter days with relatively high nitrate concentration. Accounting for the effects of water and volatilization losses closes the mass balance between the FRM and the sum of the chemical components, providing insight into the FRM measurements. (C) 2004 Elsevier Ltd. All rights reserved.Item Open Access Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite(ATMOSPHERIC ENVIRONMENT, 2004) Cabada, Juan C; Rees, Sarah; Takahama, Satoshi; Khlystov, Andrey; Pandis, Spyros N; Davidson, Cliff I; Robinson, Allen LSize-resolved aerosol mass and chemical composition were measured during the Pittsburgh Air Quality Study. Daily samples were collected for 12 months from July 2001 to June 2002. Micro-orifice uniform deposit impactors (MOUDIs) were used to collect aerosol samples of fine particulate matter smaller than 10 mum. Measurements of PM0.056, PM0.10, PM0.18, PM0.32, PM0.56, PM1.0, PM1.8 and PM2.5 with the MOUDI are available for the full study period. Seasonal variations in the concentrations are observed for all size cuts. Higher concentrations are observed during the summer and lower during the winter. Comparison between the PM2.5 measurements by the MOUDI and other integrated PM samplers reveals good agreement. Good correlation is observed for PM10 between the MOUDI and an integrated sampler but the MOUDI underestimates PM10 by 20\%. Bouncing of particles from higher stages of the MOUDI ( > PM2.5) is not a major problem because of the low concentrations of coarse particles in the area. The main cause of coarse particle losses appears to be losses to the wall of the MOUDI. Samples were collected on aluminum foils for analysis of carbonaccous material and on Teflon filters for analysis of particle mass and inorganic anions and cations. Daily samples were analyzed during the summer (July 2001) and the winter intensives (January 2002). During the summer around 50\% of the organic material is lost from the aluminum foils as compared to a filter-based sampler. These losses are due to volatilization and bounce-off from the MOUDI stages. High nitrate losses from the MOUDI are also observed during the summer (above 70\%). Good agreement between the gravimetrically determined mass and the sum of the masses of the individual compounds is obtained, if the lost mass from organics and the aerosol water content are included for the summer. For the winter no significant losses of material are detected and there exists reasonable agreement between the gravimetrical mass and the sum of the concentrations of the individual compounds. Ultrafine particles (below 100 nm) account on average, forItem Open Access The effect of vegetation and noise barriers on the dispersion and deposition of ultrafine particles(2011) Lin, MingYengUltrafine particles (UFP) emitted by traffic have been associated with health risks for people living and working near major roadways. Studies have shown that people living in near-roadway communities experience higher risk of aggravated asthma, respiratory diseases and even childhood leukemia. Sharp concentration gradients of UFP have been reported near major highways with the concentration decreasing rapidly away from the road. Dispersion of UFP downwind of a road depends on many parameters, such as the atmospheric stability and wind speed. Presence of different structures such as noise barriers and vegetation can greatly influence the dispersion and downwind concentrations of UFP. These structures can block the traffic emissions and increase vertical mixing. In addition, vegetation can reduce UFP by deposition processes. Two sets of experiments were conducted in this thesis to investigate the effect of barriers on UFP deposition and dispersion.
The first set of experiments was performed in a wind tunnel facility to address UFP deposition to vegetation barriers solely. Two analytical models were proposed to characterize UFP dry deposition to vegetation measured during the wind tunnel experiment. The first model was derived from the filtration theory to explain UFP dry deposition to pine and juniper branches. The model agrees well with the experimental data indicating that pine and juniper branches can be treated as fibrous filters. The fiber diameters of pine derived from the experimental data were also similar to the physical diameters of pine needles; thus, providing further evidence that vegetation can be regarded as fibers. The second model was derived from the continuity equation and can predict the branch-scale dry deposition of UFP using conventional canopy properties such as the drag coefficient and leaf area density. Both models agree with the measurement results to within 20%.
The second set of experiments was done in three near-roadway environments to investigate the effects of barriers on the dispersion and dry deposition of UFP. We used mobile and stationary measurements to obtain the spatial and temporal variability of UFP. Both mobile and stationary measurements indicated that vegetation and noise barriers can reduce downwind UFP concentrations through dispersion and dry deposition by 20-60 %.
In conclusion, the effect of barriers on UFP dispersion and deposition has been characterized in this thesis. Two analytical models were also proposed from the wind tunnel experiments to characterize dry deposition and agreed well with the measurement results. The analytical model could benefit future climate and air quality models.