Browsing by Author "Kilkenny, Jane"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A novel injury site-natural antibody targeted complement inhibitor protects against lung transplant injury.(American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2021-06) Li, Changhai; Patel, Kunal; Tu, Zhenxiao; Yang, Xiaofeng; Kulik, Liudmila; Alawieh, Ali; Allen, Patterson; Cheng, Qi; Wallace, Caroline; Kilkenny, Jane; Kwon, Jennie; Gibney, Barry; Cantu, Edward; Sharma, Ashish; Pipkin, Mauricio; Machuca, Tiago; Emtiazjoo, Amir; Goddard, Martin; Holers, V Michael; Nadig, Satish; Christie, Jason; Tomlinson, Stephen; Atkinson, CarlComplement is known to play a role in ischemia and reperfusion injury (IRI). A general paradigm is that complement is activated by self-reactive natural IgM antibodies (nAbs), after they engage postischemic neoepitopes. However, a role for nAbs in lung transplantation (LTx) has not been explored. Using mouse models of LTx, we investigated the role of two postischemic neoepitopes, modified annexin IV (B4) and a subset of phospholipids (C2), in LTx. Antibody deficient Rag1-/- recipient mice were protected from LTx IRI. Reconstitution with either B4 or C2nAb restored IRI, with C2 significantly more effective than B4 nAb. Based on these information, we developed/characterized a novel complement inhibitor composed of single-chain antibody (scFv) derived from the C2 nAb linked to Crry (C2scFv-Crry), a murine inhibitor of C3 activation. Using an allogeneic LTx, in which recipients contain a full nAb repertoire, C2scFv-Crry targeted to the LTx, inhibited IRI, and delayed acute rejection. Finally, we demonstrate the expression of the C2 neoepitope in human donor lungs, highlighting the translational potential of this approach.Item Open Access Emphysema-associated Autoreactive Antibodies Exacerbate Post-Lung Transplant Ischemia-Reperfusion Injury.(American journal of respiratory cell and molecular biology, 2019-06) Patel, Kunal J; Cheng, Qi; Stephenson, Sarah; Allen, D Patterson; Li, Changhai; Kilkenny, Jane; Finnegan, Ryan; Montalvo-Calero, Valeria; Esckilsen, Scott; Vasu, Chentha; Goddard, Martin; Nadig, Satish N; Atkinson, CarlChronic obstructive pulmonary disease-associated chronic inflammation has been shown to lead to an autoimmune phenotype characterized in part by the presence of lung autoreactive antibodies. We hypothesized that ischemia-reperfusion injury (IRI) liberates epitopes that would facilitate preexisting autoantibody binding, thereby exacerbating lung injury after transplant. We induced emphysema in C57BL/6 mice through 6 months of cigarette smoke (CS) exposure. Mice with CS exposure had significantly elevated serum autoantibodies compared with non-smoke-exposed age-matched (NS) mice. To determine the impact of a full preexisting autoantibody repertoire on IRI, we transplanted BALB/c donor lungs into NS or CS recipients and analyzed grafts 48 hours after transplant. CS recipients had significantly increased lung injury and immune cell infiltration after transplant. Immunofluorescence staining revealed increased IgM, IgG, and C3d deposition in CS recipients. To exclude confounding alloreactivity and confirm the role of preexisting autoantibodies in IRI, syngeneic Rag1-/- (recombination-activating protein 1-knockout) transplants were performed in which recipients were reconstituted with pooled serum from CS or NS mice. Serum from CS-exposed mice significantly increased IRI compared with control mice, with trends in antibody and C3d deposition similar to those seen in allografts. These data demonstrate that pretransplant CS exposure is associated with increased IgM/IgG autoantibodies, which, upon transplant, bind to the donor lung, activate complement, and exacerbate post-transplant IRI.