Browsing by Author "Kim, Ruby"
- Results Per Page
- Sort Options
Item Open Access Modeling the interactions between the circadian clock, dopamine, and metabolism(2022) Kim, RubyThis dissertation includes three projects in mathematical biology: (1) Mathematical modeling of the circadian clock and dopamine, (2) Mathematical analysis of a circadian clock model, and (3) Mathematical modeling of sex differences in one-carbon metabolism. Circadian rhythms, dopamine, and metabolism are all important aspects of human physiology and we use methods from dynamical systems and scientific computing to investigate these systems at the molecular level.
First, we create a mathematical model to understand the influences of the mammalian circadian clock on the neurotransmitter dopamine (DA). The circadian clock circuitry in the suprachiasmatic nucleus (SCN) drives 24-hour rhythms in many important physiological processes, including the dopaminergic system. DA imbalances have been linked to various neurological and psychiatric conditions such as Parkinson's disease, attention-deficit/hyperactivity disorder (ADHD), and mood disorders. Previous studies have shown that these conditions are often accompanied by disrupted circadian rhythms, but it has not been well understood why. We use our mathematical model to explain the mechanisms by which the circadian clock influences DA in the brain. We show that the model corresponds well with a host of experimental data and accurately predicts daily variation in extracellular DA.
The model is comprised of a system of nonlinear ordinary differential equations with solutions displaying a remarkably robust 24-hour period consistent with the biology. We further investigate different dynamical behaviors in the model, including periodicity, quasiperiodicity, and decoupling. We show that these behaviors are biologically meaningful and may help to explain clinically observed circadian or dopaminergic disruptions. In addition, experiments have suggested several links between the mammalian clock and one-carbon metabolism (OCM). OCM is essential for the synthesis of DNA and proteins, and we use mathematical modeling to understand how the biochemical reactions in OCM are influenced by sex hormones and micronutrients like folate, vitamin B12, and vitamin B6.
Item Open Access One-carbon metabolism during the menstrual cycle and pregnancy(PLOS Computational Biology) Reed, Michael; Nijhout, H Frederik; Kim, RubyItem Open Access One-carbon metabolism during the menstrual cycle and pregnancy(PLoS Computational Biology, 2021-12) Reed, Michael; Nijhout, Frederik; Kim, RubyMany enzymes in one-carbon metabolism (OCM) are up- or down-regulated by the sex hormones which vary diurnally and throughout the menstrual cycle. During pregnancy, estradiol and progesterone levels increase tremendously to modulate physiological changes in the reproductive system. In this work, we extend and improve an existing mathematical model of hepatic OCM to understand the dynamic metabolic changes that happen during the menstrual cycle and pregnancy due to estradiol variation. In particular, we add the polyamine drain on S-adenosyl methionine and the direct effects of estradiol on the enzymes cystathionine β-synthase (CBS), thymidylate synthase (TS), and dihydrofolate reductase (DHFR). We show that the homocysteine concentration varies inversely with estradiol concentration, discuss the fluctuations in 14 other one-carbon metabolites and velocities throughout the menstrual cycle, and draw comparisons with the literature. We then use the model to study the effects of vitamin B12, vitamin B6, and folate deficiencies and explain why homocysteine is not a good biomarker for vitamin deficiencies. Additionally, we compute homocysteine throughout pregnancy, and compare the results with experimental data. Our mathematical model explains how numerous homeostatic mechanisms in OCM function and provides new insights into how homocysteine and its deleterious effects are influenced by estradiol. The mathematical model can be used by others for further in silico experiments on changes in one-carbon metabolism during the menstrual cycle and pregnancy.