Browsing by Author "Kingsmore, Stephen F"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access A community approach to mortality prediction in sepsis via gene expression analysis.(Nature communications, 2018-02) Sweeney, Timothy E; Perumal, Thanneer M; Henao, Ricardo; Nichols, Marshall; Howrylak, Judith A; Choi, Augustine M; Bermejo-Martin, Jesús F; Almansa, Raquel; Tamayo, Eduardo; Davenport, Emma E; Burnham, Katie L; Hinds, Charles J; Knight, Julian C; Woods, Christopher W; Kingsmore, Stephen F; Ginsburg, Geoffrey S; Wong, Hector R; Parnell, Grant P; Tang, Benjamin; Moldawer, Lyle L; Moore, Frederick E; Omberg, Larsson; Khatri, Purvesh; Tsalik, Ephraim L; Mangravite, Lara M; Langley, Raymond JImproved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765-0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis.Item Open Access A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2.(PLoS One, 2013) Woods, Christopher W; McClain, Micah T; Chen, Minhua; Zaas, Aimee K; Nicholson, Bradly P; Varkey, Jay; Veldman, Timothy; Kingsmore, Stephen F; Kingsmore, Stephen F; Huang, Yongsheng; Lambkin-Williams, Robert; Gilbert, Anthony G; Hero, Alfred O; Ramsburg, Elizabeth; Glickman, Seth; Lucas, Joseph E; Carin, Lawrence; Ginsburg, Geoffrey SThere is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007 (H1N1) or A/Wisconsin/67/2005 (H3N2)), and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41 inoculated volunteers, 18 (44%) developed symptomatic infection. Using unbiased sparse latent factor regression analysis, we generated a gene signature (or factor) for symptomatic influenza capable of detecting 94% of infected cases. This gene signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (p = 0.003, H1N1) and 38 hours (p-value = 0.005, H3N2) before peak clinical symptoms. In order to test the relevance of these findings in naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency Department patients where it discriminates between swine-origin influenza A/H1N1 (2009) infected and non-infected individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for detection before typical clinical symptoms are apparent.Item Open Access An integrated transcriptome and expressed variant analysis of sepsis survival and death.(Genome Med, 2014) Tsalik, Ephraim L; Langley, Raymond J; Dinwiddie, Darrell L; Miller, Neil A; Yoo, Byunggil; van Velkinburgh, Jennifer C; Smith, Laurie D; Thiffault, Isabella; Jaehne, Anja K; Valente, Ashlee M; Henao, Ricardo; Yuan, Xin; Glickman, Seth W; Rice, Brandon J; McClain, Micah T; Carin, Lawrence; Corey, G Ralph; Ginsburg, Geoffrey S; Cairns, Charles B; Otero, Ronny M; Fowler, Vance G; Rivers, Emanuel P; Woods, Christopher W; Kingsmore, Stephen FBACKGROUND: Sepsis, a leading cause of morbidity and mortality, is not a homogeneous disease but rather a syndrome encompassing many heterogeneous pathophysiologies. Patient factors including genetics predispose to poor outcomes, though current clinical characterizations fail to identify those at greatest risk of progression and mortality. METHODS: The Community Acquired Pneumonia and Sepsis Outcome Diagnostic study enrolled 1,152 subjects with suspected sepsis. We sequenced peripheral blood RNA of 129 representative subjects with systemic inflammatory response syndrome (SIRS) or sepsis (SIRS due to infection), including 78 sepsis survivors and 28 sepsis non-survivors who had previously undergone plasma proteomic and metabolomic profiling. Gene expression differences were identified between sepsis survivors, sepsis non-survivors, and SIRS followed by gene enrichment pathway analysis. Expressed sequence variants were identified followed by testing for association with sepsis outcomes. RESULTS: The expression of 338 genes differed between subjects with SIRS and those with sepsis, primarily reflecting immune activation in sepsis. Expression of 1,238 genes differed with sepsis outcome: non-survivors had lower expression of many immune function-related genes. Functional genetic variants associated with sepsis mortality were sought based on a common disease-rare variant hypothesis. VPS9D1, whose expression was increased in sepsis survivors, had a higher burden of missense variants in sepsis survivors. The presence of variants was associated with altered expression of 3,799 genes, primarily reflecting Golgi and endosome biology. CONCLUSIONS: The activation of immune response-related genes seen in sepsis survivors was muted in sepsis non-survivors. The association of sepsis survival with a robust immune response and the presence of missense variants in VPS9D1 warrants replication and further functional studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT00258869. Registered on 23 November 2005.Item Open Access Discriminating Bacterial and Viral Infection Using a Rapid Host Gene Expression Test.(Critical care medicine, 2021-10) Tsalik, Ephraim L; Henao, Ricardo; Montgomery, Jesse L; Nawrocki, Jeff W; Aydin, Mert; Lydon, Emily C; Ko, Emily R; Petzold, Elizabeth; Nicholson, Bradly P; Cairns, Charles B; Glickman, Seth W; Quackenbush, Eugenia; Kingsmore, Stephen F; Jaehne, Anja K; Rivers, Emanuel P; Langley, Raymond J; Fowler, Vance G; McClain, Micah T; Crisp, Robert J; Ginsburg, Geoffrey S; Burke, Thomas W; Hemmert, Andrew C; Woods, Christopher W; Antibacterial Resistance Leadership GroupObjectives
Host gene expression signatures discriminate bacterial and viral infection but have not been translated to a clinical test platform. This study enrolled an independent cohort of patients to describe and validate a first-in-class host response bacterial/viral test.Design
Subjects were recruited from 2006 to 2016. Enrollment blood samples were collected in an RNA preservative and banked for later testing. The reference standard was an expert panel clinical adjudication, which was blinded to gene expression and procalcitonin results.Setting
Four U.S. emergency departments.Patients
Six-hundred twenty-three subjects with acute respiratory illness or suspected sepsis.Interventions
Forty-five-transcript signature measured on the BioFire FilmArray System (BioFire Diagnostics, Salt Lake City, UT) in ~45 minutes.Measurements and main results
Host response bacterial/viral test performance characteristics were evaluated in 623 participants (mean age 46 yr; 45% male) with bacterial infection, viral infection, coinfection, or noninfectious illness. Performance of the host response bacterial/viral test was compared with procalcitonin. The test provided independent probabilities of bacterial and viral infection in ~45 minutes. In the 213-subject training cohort, the host response bacterial/viral test had an area under the curve for bacterial infection of 0.90 (95% CI, 0.84-0.94) and 0.92 (95% CI, 0.87-0.95) for viral infection. Independent validation in 209 subjects revealed similar performance with an area under the curve of 0.85 (95% CI, 0.78-0.90) for bacterial infection and 0.91 (95% CI, 0.85-0.94) for viral infection. The test had 80.1% (95% CI, 73.7-85.4%) average weighted accuracy for bacterial infection and 86.8% (95% CI, 81.8-90.8%) for viral infection in this validation cohort. This was significantly better than 68.7% (95% CI, 62.4-75.4%) observed for procalcitonin (p < 0.001). An additional cohort of 201 subjects with indeterminate phenotypes (coinfection or microbiology-negative infections) revealed similar performance.Conclusions
The host response bacterial/viral measured using the BioFire System rapidly and accurately discriminated bacterial and viral infection better than procalcitonin, which can help support more appropriate antibiotic use.Item Open Access Evaluating the discriminating capacity of cell death (apoptotic) biomarkers in sepsis.(Journal of intensive care, 2018-01) Duplessis, Christopher; Gregory, Michael; Frey, Kenneth; Bell, Matthew; Truong, Luu; Schully, Kevin; Lawler, James; Langley, Raymond J; Kingsmore, Stephen F; Woods, Christopher W; Rivers, Emanuel P; Jaehne, Anja K; Quackenbush, Eugenia B; Fowler, Vance G; Tsalik, Ephraim L; Clark, DanielleBackground
Sepsis biomarker panels that provide diagnostic and prognostic discrimination in sepsis patients would be transformative to patient care. We assessed the mortality prediction and diagnostic discriminatory accuracy of two biomarkers reflective of cell death (apoptosis), circulating cell-free DNA (cfDNA), and nucleosomes.Methods
The cfDNA and nucleosome levels were assayed in plasma samples acquired in patients admitted from four emergency departments with suspected sepsis. Subjects with non-infectious systemic inflammatory response syndrome (SIRS) served as controls. Samples were acquired at enrollment (T0) and 24 h later (T24). We assessed diagnostic (differentiating SIRS from sepsis) and prognostic (28-day mortality) predictive power. Models incorporating procalcitonin (diagnostic prediction) and APACHE II scores (mortality prediction) were generated.Results
Two hundred three subjects were included (107 provided procalcitonin measurements). Four subjects exhibited uncomplicated sepsis, 127 severe sepsis, 35 septic shock, and 24 had non-infectious SIRS. There were 190-survivors and 13 non-survivors. Mortality prediction models using cfDNA, nucleosomes, or APACHEII yielded AUC values of 0.61, 0.75, and 0.81, respectively. A model combining nucleosomes with the APACHE II score improved the AUC to 0.84. Diagnostic models distinguishing sepsis from SIRS using procalcitonin, cfDNA(T0), or nucleosomes(T0) yielded AUC values of 0.64, 0.65, and 0.63, respectively. The three parameter model yielded an AUC of 0.74.Conclusions
To our knowledge, this is the first head-to-head comparison of cfDNA and nucleosomes in diagnosing sepsis and predicting sepsis-related mortality. Both cfDNA and nucleosome concentrations demonstrated a modest ability to distinguish sepsis survivors and non-survivors and provided additive diagnostic predictive accuracy in differentiating sepsis from non-infectious SIRS when integrated into a diagnostic prediction model including PCT and APACHE II. A sepsis biomarker strategy incorporating measures of the apoptotic pathway may serve as an important component of a sepsis diagnostic and mortality prediction tool.Item Open Access Gene expression-based classifiers identify Staphylococcus aureus infection in mice and humans.(PLoS One, 2013) Ahn, Sun Hee; Tsalik, Ephraim L; Cyr, Derek D; Zhang, Yurong; van Velkinburgh, Jennifer C; Langley, Raymond J; Glickman, Seth W; Cairns, Charles B; Zaas, Aimee K; Rivers, Emanuel P; Otero, Ronny M; Veldman, Tim; Kingsmore, Stephen F; Kingsmore, Stephen F; Lucas, Joseph; Woods, Christopher W; Ginsburg, Geoffrey S; Fowler, Vance GStaphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host's inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.84). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.Item Open Access Host gene expression classifiers diagnose acute respiratory illness etiology.(Sci Transl Med, 2016-01-20) Tsalik, Ephraim L; Henao, Ricardo; Nichols, Marshall; Burke, Thomas; Ko, Emily R; McClain, Micah T; Hudson, Lori L; Mazur, Anna; Freeman, Debra H; Veldman, Tim; Langley, Raymond J; Quackenbush, Eugenia B; Glickman, Seth W; Cairns, Charles B; Jaehne, Anja K; Rivers, Emanuel P; Otero, Ronny M; Zaas, Aimee K; Kingsmore, Stephen F; Lucas, Joseph; Fowler, Vance G; Carin, Lawrence; Ginsburg, Geoffrey S; Woods, Christopher WAcute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.Item Open Access Renal systems biology of patients with systemic inflammatory response syndrome.(Kidney Int, 2015-10) Tsalik, Ephraim L; Willig, Laurel K; Rice, Brandon J; van Velkinburgh, Jennifer C; Mohney, Robert P; McDunn, Jonathan E; Dinwiddie, Darrell L; Miller, Neil A; Mayer, Eric S; Glickman, Seth W; Jaehne, Anja K; Glew, Robert H; Sopori, Mohan L; Otero, Ronny M; Harrod, Kevin S; Cairns, Charles B; Fowler, Vance G; Rivers, Emanuel P; Woods, Christopher W; Kingsmore, Stephen F; Langley, Raymond JA systems biology approach was used to comprehensively examine the impact of renal disease and hemodialysis (HD) on patient response during critical illness. To achieve this, we examined the metabolome, proteome, and transcriptome of 150 patients with critical illness, stratified by renal function. Quantification of plasma metabolites indicated greater change as renal function declined, with the greatest derangements in patients receiving chronic HD. Specifically, 6 uremic retention molecules, 17 other protein catabolites, 7 modified nucleosides, and 7 pentose phosphate sugars increased as renal function declined, consistent with decreased excretion or increased catabolism of amino acids and ribonucleotides. Similarly, the proteome showed increased levels of low-molecular-weight proteins and acute-phase reactants. The transcriptome revealed a broad-based decrease in mRNA levels among patients on HD. Systems integration revealed an unrecognized association between plasma RNASE1 and several RNA catabolites and modified nucleosides. Further, allantoin, N1-methyl-4-pyridone-3-carboxamide, and N-acetylaspartate were inversely correlated with the majority of significantly downregulated genes. Thus, renal function broadly affected the plasma metabolome, proteome, and peripheral blood transcriptome during critical illness; changes were not effectively mitigated by hemodialysis. These studies allude to several novel mechanisms whereby renal dysfunction contributes to critical illness.Item Open Access Validation of a host response test to distinguish bacterial and viral respiratory infection.(EBioMedicine, 2019-10-17) Lydon, Emily C; Henao, Ricardo; Burke, Thomas W; Aydin, Mert; Nicholson, Bradly P; Glickman, Seth W; Fowler, Vance G; Quackenbush, Eugenia B; Cairns, Charles B; Kingsmore, Stephen F; Jaehne, Anja K; Rivers, Emanuel P; Langley, Raymond J; Petzold, Elizabeth; Ko, Emily R; McClain, Micah T; Ginsburg, Geoffrey S; Woods, Christopher W; Tsalik, Ephraim LBACKGROUND:Distinguishing bacterial and viral respiratory infections is challenging. Novel diagnostics based on differential host gene expression patterns are promising but have not been translated to a clinical platform nor extensively tested. Here, we validate a microarray-derived host response signature and explore performance in microbiology-negative and coinfection cases. METHODS:Subjects with acute respiratory illness were enrolled in participating emergency departments. Reference standard was an adjudicated diagnosis of bacterial infection, viral infection, both, or neither. An 87-transcript signature for distinguishing bacterial, viral, and noninfectious illness was measured from peripheral blood using RT-PCR. Performance characteristics were evaluated in subjects with confirmed bacterial, viral, or noninfectious illness. Subjects with bacterial-viral coinfection and microbiologically-negative suspected bacterial infection were also evaluated. Performance was compared to procalcitonin. FINDINGS:151 subjects with microbiologically confirmed, single-etiology illness were tested, yielding AUROCs 0•85-0•89 for bacterial, viral, and noninfectious illness. Accuracy was similar to procalcitonin (88% vs 83%, p = 0•23) for bacterial vs. non-bacterial infection. Whereas procalcitonin cannot distinguish viral from non-infectious illness, the RT-PCR test had 81% accuracy in making this determination. Bacterial-viral coinfection was subdivided. Among 19 subjects with bacterial superinfection, the RT-PCR test identified 95% as bacterial, compared to 68% with procalcitonin (p = 0•13). Among 12 subjects with bacterial infection superimposed on chronic viral infection, the RT-PCR test identified 83% as bacterial, identical to procalcitonin. 39 subjects had suspected bacterial infection; the RT-PCR test identified bacterial infection more frequently than procalcitonin (82% vs 64%, p = 0•02). INTERPRETATION:The RT-PCR test offered similar diagnostic performance to procalcitonin in some subgroups but offered better discrimination in others such as viral vs. non-infectious illness and bacterial/viral coinfection. Gene expression-based tests could impact decision-making for acute respiratory illness as well as a growing number of other infectious and non-infectious diseases.