Browsing by Author "Kirchhoff, Frank"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Host immunity associated with spontaneous suppression of viremia in therapy-naïve young rhesus macaques following neonatal SHIV infection.(Journal of virology, 2023-10) Evangelous, Tyler D; Berry, Madison; Venkatayogi, Sravani; LeMaster, Cas; Geanes, Eric S; De Naeyer, Nicole; DeMarco, Todd; Shen, Xiaoying; Li, Hui; Hora, Bhavna; Solomonis, Nicholas; Misamore, Johnathan; Lewis, Mark G; Denny, Thomas N; Montefiori, David; Shaw, George M; Wiehe, Kevin; Bradley, Todd; Williams, Wilton BWe recently found that a new pathogenic chimeric simian-human immunodeficiency virus (SHIV) elicited heterologous human immunodeficiency virus type-1 (HIV-1) neutralizing antibodies (nAbs) in therapy-naïve young rhesus macaques (RMs) following neonatal SHIV infection. Moreover, a subset of the SHIV-infected young RMs spontaneously controlled viremia. Here we evaluated humoral and cellular immunity and plasma biomarkers associated with spontaneous viremia suppression in a new model of young SHIV-infected RMs that generated heterologous HIV-1 nAbs independent of viremia control to gain insights into pediatric immunity that may be harnessed by appropriate therapies in HIV-1-infected infants and children. We determined the levels of 31 plasma analytes (cytokines, chemokines, and growth factors) in SHIV-infected RMs over the course of infection and found that six analytes with chemoattractant or pro-inflammatory activities had significantly lower levels in plasma of RMs that controlled viremia compared to non-controllers. Single-cell transcriptomics of blood-derived immune cells demonstrated that RMs with viremia control had upregulated genes associated with immune activation and cytotoxic functions, whereas non-controllers had upregulated genes associated with immune cell exhaustion and dysfunction. In addition to CD8 T and natural killer cells, monocytes with upregulation of inhibitory genes previously reported only in cytotoxic cells constituted the immunologic environment associated with viremia suppression. These data implicated a complex immunologic milieu of viremia suppression that is not fully defined in pediatric subjects. Understanding immune cell subsets that may be harnessed to control viremia will provide insights into future designs of HIV-1 therapeutic strategies. IMPORTANCE Despite the advent of highly active anti-retroviral therapy, people are still dying from HIV-related causes, many of whom are children, and a protective vaccine or cure is needed to end the HIV pandemic. Understanding the nature and activation states of immune cell subsets during infection will provide insights into the immunologic milieu associated with viremia suppression that can be harnessed via therapeutic strategies to achieve a functional cure, but these are understudied in pediatric subjects. We evaluated humoral and adaptive host immunity associated with suppression of viremia in rhesus macaques infected soon after birth with a pathogenic SHIV. The results from our study provide insights into the immune cell subsets and functions associated with viremia control in young macaques that may translate to pediatric subjects for the design of future anti-viral strategies in HIV-1-infected infants and children and contribute to an understudied area of HIV-1 pathogenesis in pediatric subjects.Item Open Access SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity.(Nature communications, 2021-02-24) Huot, Nicolas; Rascle, Philippe; Petitdemange, Caroline; Contreras, Vanessa; Stürzel, Christina M; Baquero, Eduard; Harper, Justin L; Passaes, Caroline; Legendre, Rachel; Varet, Hugo; Madec, Yoann; Sauermann, Ulrike; Stahl-Hennig, Christiane; Nattermann, Jacob; Saez-Cirion, Asier; Le Grand, Roger; Keith Reeves, R; Paiardini, Mirko; Kirchhoff, Frank; Jacquelin, Beatrice; Müller-Trutwin, MichaelaNatural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2alow NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased NKG2C expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.Item Open Access Species-specific host factors rather than virus-intrinsic virulence determine primate lentiviral pathogenicity.(Nature communications, 2018-04) Joas, Simone; Parrish, Erica H; Gnanadurai, Clement W; Lump, Edina; Stürzel, Christina M; Parrish, Nicholas F; Learn, Gerald H; Sauermann, Ulrike; Neumann, Berit; Rensing, Kerstin Mätz; Fuchs, Dietmar; Billingsley, James M; Bosinger, Steven E; Silvestri, Guido; Apetrei, Cristian; Huot, Nicolas; Garcia-Tellez, Thalia; Müller-Trutwin, Michaela; Hotter, Dominik; Sauter, Daniel; Stahl-Hennig, Christiane; Hahn, Beatrice H; Kirchhoff, FrankHIV-1 causes chronic inflammation and AIDS in humans, whereas related simian immunodeficiency viruses (SIVs) replicate efficiently in their natural hosts without causing disease. It is currently unknown to what extent virus-specific properties are responsible for these different clinical outcomes. Here, we incorporate two putative HIV-1 virulence determinants, i.e., a Vpu protein that antagonizes tetherin and blocks NF-κB activation and a Nef protein that fails to suppress T cell activation via downmodulation of CD3, into a non-pathogenic SIVagm strain and test their impact on viral replication and pathogenicity in African green monkeys. Despite sustained high-level viremia over more than 4 years, moderately increased immune activation and transcriptional signatures of inflammation, the HIV-1-like SIVagm does not cause immunodeficiency or any other disease. These data indicate that species-specific host factors rather than intrinsic viral virulence factors determine the pathogenicity of primate lentiviruses.