Browsing by Author "Kitagawa, Mayumi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression.(Biol Open, 2013-05-15) Xu, Peng; Raetz, Elizabeth A; Kitagawa, Mayumi; Virshup, David M; Lee, Sang HyunBUBR1 is a mitotic phosphoprotein essential for the maintenance of chromosome stability by promoting chromosome congression and proper kinetochore-microtubule (K-fiber) attachment, but the underlying mechanism(s) has remained elusive. Here we identify BUBR1 as a binding partner of the B56 family of Protein Phosphatase 2A regulatory subunits. The interaction between BUBR1 and the B56 family is required for chromosome congression, since point mutations in BUBR1 that block B56 binding abolish chromosome congression. The BUBR1:B56-PP2A complex opposes Aurora B kinase activity, since loss of the complex can be reverted by inhibiting Aurora B. Importantly, we show that the failure of BUBR1 to recruit B56-PP2A also contributes to the chromosome congression defects found in cells derived from patients with the Mosaic Variegated Aneuploidy (MVA) syndrome. Together, we propose that B56-PP2A is a key mediator of BUBR1's role in chromosome congression and functions by antagonizing Aurora B activity at the kinetochore for establishing stable kinetochore-microtubule attachment at the metaphase plate.Item Open Access CoA synthase regulates mitotic fidelity via CBP-mediated acetylation.(Nature communications, 2018-03-12) Lin, Chao-Chieh; Kitagawa, Mayumi; Tang, Xiaohu; Hou, Ming-Hsin; Wu, Jianli; Qu, Dan Chen; Srinivas, Vinayaka; Liu, Xiaojing; Thompson, J Will; Mathey-Prevot, Bernard; Yao, Tso-Pang; Lee, Sang Hyun; Chi, Jen-TsanThe temporal activation of kinases and timely ubiquitin-mediated degradation is central to faithful mitosis. Here we present evidence that acetylation controlled by Coenzyme A synthase (COASY) and acetyltransferase CBP constitutes a novel mechanism that ensures faithful mitosis. We found that COASY knockdown triggers prolonged mitosis and multinucleation. Acetylome analysis reveals that COASY inactivation leads to hyper-acetylation of proteins associated with mitosis, including CBP and an Aurora A kinase activator, TPX2. During early mitosis, a transient CBP-mediated TPX2 acetylation is associated with TPX2 accumulation and Aurora A activation. The recruitment of COASY inhibits CBP-mediated TPX2 acetylation, promoting TPX2 degradation for mitotic exit. Consistently, we detected a stage-specific COASY-CBP-TPX2 association during mitosis. Remarkably, pharmacological and genetic inactivation of CBP effectively rescued the mitotic defects caused by COASY knockdown. Together, our findings uncover a novel mitotic regulation wherein COASY and CBP coordinate an acetylation network to enforce productive mitosis.