Browsing by Author "Klem, Igor"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Cardiometabolic Comorbidities in Cancer Survivors: JACC: CardioOncology State-of-the-Art Review.(JACC. CardioOncology, 2022-06-21) Zullig, Leah L; Sung, Anthony D; Khouri, Michel G; Jazowski, Shelley; Shah, Nishant P; Sitlinger, Andrea; Blalock, Dan V; Whitney, Colette; Kikuchi, Robin; Bosworth, Hayden B; Crowley, Matthew J; Goldstein, Karen M; Klem, Igor; Oeffinger, Kevin C; Dent, SusanThere are nearly 17 million cancer survivors in the United States, including those who are currently receiving cancer therapy with curative intent and expected to be long-term survivors, as well as those with chronic cancers such as metastatic disease or chronic lymphocytic leukemia, who will receive cancer therapy for many years. Current clinical practice guidelines focus on lifestyle interventions, such as exercise and healthy eating habits, but generally do not address management strategies for clinicians or strategies to increase adherence to medications. We discuss 3 cardiometabolic comorbidities among cancer survivors and present the prevalence of comorbidities prior to a cancer diagnosis, treatment of comorbidities during cancer therapy, and management considerations of comorbidities in long-term cancer survivors or those on chronic cancer therapy. Approaches to support medication adherence and potential methods to enhance a team approach to optimize care of the individual with cancer across the continuum of disease are discussed.Item Open Access Dark-Blood Delayed Enhancement Cardiac Magnetic Resonance of Myocardial Infarction.(JACC Cardiovasc Imaging, 2017-12-08) Kim, Han W; Rehwald, Wolfgang G; Jenista, Elizabeth R; Wendell, David C; Filev, Peter; van Assche, Lowie; Jensen, Christoph J; Parker, Michele A; Chen, Enn-Ling; Crowley, Anna Lisa C; Klem, Igor; Judd, Robert M; Kim, Raymond JOBJECTIVES: This study introduced and validated a novel flow-independent delayed enhancement technique that shows hyperenhanced myocardium while simultaneously suppressing blood-pool signal. BACKGROUND: The diagnosis and assessment of myocardial infarction (MI) is crucial in determining clinical management and prognosis. Although delayed enhancement cardiac magnetic resonance (DE-CMR) is an in vivo reference standard for imaging MI, an important limitation is poor delineation between hyperenhanced myocardium and bright LV cavity blood-pool, which may cause many infarcts to become invisible. METHODS: A canine model with pathology as the reference standard was used for validation (n = 22). Patients with MI and normal controls were studied to ascertain clinical performance (n = 31). RESULTS: In canines, the flow-independent dark-blood delayed enhancement (FIDDLE) technique was superior to conventional DE-CMR for the detection of MI, with higher sensitivity (96% vs. 85%, respectively; p = 0.002) and accuracy (95% vs. 87%, respectively; p = 0.01) and with similar specificity (92% vs, 92%, respectively; p = 1.0). In infarcts that were identified by both techniques, the entire length of the endocardial border between infarcted myocardium and adjacent blood-pool was visualized in 33% for DE-CMR compared with 100% for FIDDLE. There was better agreement for FIDDLE-measured infarct size than for DE-CMR infarct size (95% limits-of-agreement, 2.1% vs. 5.5%, respectively; p < 0.0001). In patients, findings were similar. FIDDLE demonstrated higher accuracy for diagnosis of MI than DE-CMR (100% [95% confidence interval [CI]: 89% to 100%] vs. 84% [95% CI: 66% to 95%], respectively; p = 0.03). CONCLUSIONS: The study introduced and validated a novel CMR technique that improves the discrimination of the border between infarcted myocardium and adjacent blood-pool. This dark-blood technique provides diagnostic performance that is superior to that of the current in vivo reference standard for the imaging diagnosis of MI.Item Open Access Relationship of T2-Weighted MRI Myocardial Hyperintensity and the Ischemic Area-At-Risk.(Circ Res, 2015-07-17) Kim, Han W; Van Assche, Lowie; Jennings, Robert B; Wince, W Benjamin; Jensen, Christoph J; Rehwald, Wolfgang G; Wendell, David C; Bhatti, Lubna; Spatz, Deneen M; Parker, Michele A; Jenista, Elizabeth R; Klem, Igor; Crowley, Anna Lisa C; Chen, Enn-Ling; Judd, Robert M; Kim, Raymond JRATIONALE: After acute myocardial infarction (MI), delineating the area-at-risk (AAR) is crucial for measuring how much, if any, ischemic myocardium has been salvaged. T2-weighted MRI is promoted as an excellent method to delineate the AAR. However, the evidence supporting the validity of this method to measure the AAR is indirect, and it has never been validated with direct anatomic measurements. OBJECTIVE: To determine whether T2-weighted MRI delineates the AAR. METHODS AND RESULTS: Twenty-one canines and 24 patients with acute MI were studied. We compared bright-blood and black-blood T2-weighted MRI with images of the AAR and MI by histopathology in canines and with MI by in vivo delayed-enhancement MRI in canines and patients. Abnormal regions on MRI and pathology were compared by (a) quantitative measurement of the transmural-extent of the abnormality and (b) picture matching of contours. We found no relationship between the transmural-extent of T2-hyperintense regions and that of the AAR (bright-blood-T2: r=0.06, P=0.69; black-blood-T2: r=0.01, P=0.97). Instead, there was a strong correlation with that of infarction (bright-blood-T2: r=0.94, P<0.0001; black-blood-T2: r=0.95, P<0.0001). Additionally, contour analysis demonstrated a fingerprint match of T2-hyperintense regions with the intricate contour of infarcted regions by delayed-enhancement MRI. Similarly, in patients there was a close correspondence between contours of T2-hyperintense and infarcted regions, and the transmural-extent of these regions were highly correlated (bright-blood-T2: r=0.82, P<0.0001; black-blood-T2: r=0.83, P<0.0001). CONCLUSION: T2-weighted MRI does not depict the AAR. Accordingly, T2-weighted MRI should not be used to measure myocardial salvage, either to inform patient management decisions or to evaluate novel therapies for acute MI.Item Open Access Sources of variability in quantification of cardiovascular magnetic resonance infarct size - reproducibility among three core laboratories.(J Cardiovasc Magn Reson, 2017-08-11) Klem, Igor; Heiberg, Einar; Van Assche, Lowie; Parker, Michele A; Kim, Han W; Grizzard, John D; Arheden, Håkan; Kim, Raymond JBACKGROUND: Acute myocardial infarct (AMI) size depicted by late gadolinium enhancement cardiovascular magnetic resonance (CMR) is increasingly used as an efficacy endpoint in randomized trials comparing AMI therapies. Infarct size is quantified using manual planimetry (MANUAL), visual scoring (VISUAL), or automated techniques using signal-intensity thresholding (AUTO). Although AUTO is considered the most reproducible, prior studies did not account for the subjective determination of endocardial/epicardial borders, which all methods require. For MANUAL and VISUAL, prior studies did not address how to treat intermediate signal intensities due to partial volume. METHODS: To assess sources of variability, AMI size was measured in 30 patients and 12 controls by 3 core-laboratories using 8 methods, each separated by more than 2 months time (n = 720 evaluations). The methods were: (1,2) AUTOSegment, AUTOFWHM (using Segment software or the full-width-at-half-maximum algorithm, respectively); (3,4) AUTO-UCSegment, AUTO-UCFWHM (user correction for endocardial border pixels, no-reflow, etc.); (5) MANUAL; (6) MANUAL-ISI (adjustment for intermediate signal-intensities); (7) VISUAL; (8) VISUAL-ISI. RESULTS: Mean infarct size varied between 16.8% and 27.2% of LV mass depending on method. Even automated techniques with no user interaction for infarct borders resulted in significant within-patient variability given the need to subjectively trace endocardial/epicardial contours. The coefficient-of-variation (CV) was 10.6% and 14.6% for AUTOSegment and AUTOFWHM, respectively. For manual and visual categories, reproducibility was improved when intermediate signal-intensities were considered (MANUAL-ISI vs MANUAL: CV = 8.3% vs 14.4%; p = 0.03; VISUAL-ISI vs VISUAL: CV = 8.4% vs 10.9%; p = 0.01). For AUTO-UCSegment, MANUAL-ISI, and VISUAL-ISI (best technique in each category) within-patient variability due to the quantification method was less than 10% of total variability, and the required sample sizes for detecting a 5% absolute difference in infarct size were 62, 63, and 62 patients, respectively. CONCLUSION: Among CMR core-laboratories, an important source of variability in infarct size quantification is the subjective delineation of endocardial/epicardial borders. When intermediate signal intensities are considered in manual planimetry and visual scoring, reproducibility and impact on sample size are similar to automated techniques.