Browsing by Author "Klitzman, Bruce"
Results Per Page
Sort Options
Item Open Access A model of sequential heart and composite tissue allotransplant in rats.(Plast Reconstr Surg, 2010-07) Yang, Jun; Erdmann, Detlev; Chang, JC; Komatsu, Issei; Zhang, YiXin; Wang, DanRu; Hodavance, Michael S; Hollenbeck, Scott T; Levinson, Howard; Klitzman, Bruce; Levin, LSBACKGROUND: Some of the 600,000 patients with solid organ allotransplants need reconstruction with a composite tissue allotransplant, such as the hand, abdominal wall, or face. The aim of this study was to develop a rat model for assessing the effects of a secondary composite tissue allotransplant on a primary heart allotransplant. METHODS: Hearts of Wistar Kyoto rats were harvested and transplanted heterotopically to the neck of recipient Fisher 344 rats. The anastomoses were performed between the donor brachiocephalic artery and the recipient left common carotid artery, and between the donor pulmonary artery and the recipient external jugular vein. Recipients received cyclosporine A for 10 days only. Heart rate was assessed noninvasively. The sequential composite tissue allotransplant consisted of a 3 x 3-cm abdominal musculocutaneous flap harvested from Lewis rats and transplanted to the abdomen of the heart allotransplant recipients. The abdominal flap vessels were connected to the femoral vessels. No further immunosuppression was administered following the composite tissue allotransplant. Ten days after composite tissue allotransplantation, rejection of the heart and abdominal flap was assessed histologically. RESULTS: The rat survival rate of the two-stage transplant surgery was 80 percent. The transplanted heart rate decreased from 150 +/- 22 beats per minute immediately after transplant to 83 +/- 12 beats per minute on day 20 (10 days after stopping immunosuppression). CONCLUSIONS: This sequential allotransplant model is technically demanding. It will facilitate investigation of the effects of a secondary composite tissue allotransplant following primary solid organ transplantation and could be useful in developing future immunotherapeutic strategies.Item Open Access Adipose Stem Cells Improve the Foreign Body Response(2008-03-18) Prichard, Heather LedbetterMany implanted devices fail due to the formation of an avascular capsule. Fat is known to promote healing and vascularization. It is possible that isolating and attaching ASCs (adipose stem cells) to an implanted device improves the healing in the adjacent tissue.
Various attachment methods were studied, and the fibronectin treatment was found comparable to or better than other treatments. Next, bare and ASC coated polyurethane were implanted into rats. The fibrous capsule surrounding the bare polyurethane was thicker and contained more collagen at 8 weeks. Additionally, the microvessel density in the tissue surrounding the ASC coated polyurethane was significantly higher at 4 and 8 weeks. Quantification of glucose sensor response following ASC attachment for 1 week found no measurable significant differences in function.
The bioluminescence technique, which quantifies the tissue glucose concentration around the implant at the moment of freezing, was used to determine if ASC attachment to biomaterials impacts the tissue glucose concentration profile. ASC attachment to polyurethane and to glucose sensors did not significantly change the glucose profiles in the tissue. However, a quantifiable glucose concentration profile was observed around all glucose sensors.
The final experiments were performed to identify a possible mechanism that adipose tissue uses to alter the foreign body response. In vitro experiments showed that VEGF (VEGF-A specifically) secretion following ASC attachment to polyurethane was 10-20 times higher than with fibroblast attachment after three days and 40-70 times higher after six days. This high secretion of VEGF would likely have in vivo physiological affects on microvasculature.
In conclusion, the attachment of ASCs to polyurethane reduced the thickness and collagen content of the fibrous capsule surrounding ASC coated implants and increased the microvessel density in adjacent tissue. In addition, ASC attachment did not enhance glucose sensor function, nor did it decrease the glucose concentration in the adjacent tissue. Finally, ASCs were found to secrete high amounts of pro-vascular cytokines, which likely plays a key role in the observed improvement of the foreign body response.
Item Open Access Anti-hypotensive treatment and endothelin blockade synergistically antagonize exercise fatigue in rats under simulated high altitude.(PLoS One, 2014) Radiloff, Daniel; Zhao, Yulin; Boico, Alina; Blueschke, Gert; Palmer, Gregory; Fontanella, Andrew; Dewhirst, Mark; Piantadosi, Claude A; Noveck, Robert; Irwin, David; Hamilton, Karyn; Klitzman, Bruce; Schroeder, ThiesRapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.Item Open Access Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut.(eLife, 2018-06-19) Reese, Aspen T; Cho, Eugenia H; Klitzman, Bruce; Nichols, Scott P; Wisniewski, Natalie A; Villa, Max M; Durand, Heather K; Jiang, Sharon; Midani, Firas S; Nimmagadda, Sai N; O'Connell, Thomas M; Wright, Justin P; Deshusses, Marc A; David, Lawrence AHow host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration.Item Open Access Bioburden after Staphylococcus aureus inoculation in type 1 diabetic rats undergoing internal fixation.(Plast Reconstr Surg, 2014-09) Brown, Nga L; Rose, Michael B; Blueschke, Gert; Cho, Eugenia H; Schoenfisch, Mark H; Erdmann, Detlev; Klitzman, BruceSUMMARY: Fracture stabilization in the diabetic patient is associated with higher complication rates, particularly infection and impaired wound healing, which can lead to major tissue damage, osteomyelitis, and higher amputation rates. With an increasing prevalence of diabetes and an aging population, the risks of infection of internal fixation devices are expected to grow. Although numerous retrospective clinical studies have identified a relationship between diabetes and infection, currently there are few animal models that have been used to investigate postoperative surgical-site infections associated with internal fixator implantation and diabetes. The authors therefore refined the protocol for inducing hyperglycemia and compared the bacterial burden in controls to pharmacologically induced type 1 diabetic rats after undergoing internal fracture plate fixation and Staphylococcus aureus surgical-site inoculation. Using an initial series of streptozotocin doses, followed by optional additional doses to reach a target blood glucose range of 300 to 600 mg/dl, the authors reliably induced diabetes in 100 percent of the rats (n = 16), in which a narrow hyperglycemic range was maintained 14 days after onset of diabetes (mean ± SEM, 466 ± 16 mg/dl; coefficient of variation, 0.15). With respect to their primary endpoint, the authors quantified a significantly higher infectious burden in inoculated diabetic animals (median, 3.2 × 10 colony-forming units/mg dry tissue) compared with inoculated nondiabetic animals (7.2 × 10 colony-forming units/mg dry tissue). These data support the authors' hypothesis that uncontrolled diabetes adversely affects the immune system's ability to clear Staphylococcus aureus associated with internal hardware.Item Open Access Bioengineered Approaches to Prevent Hypertrophic Scar Contraction(2016) Lorden, Elizabeth RBurn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.
In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.
In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.
In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.
In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.
Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.
Item Open Access Bioluminescence imaging of glucose in tissue surrounding polyurethane and glucose sensor implants.(J Diabetes Sci Technol, 2010-09-01) Prichard, Heather L; Schroeder, Thies; Reichert, William M; Klitzman, BruceBACKGROUND: The bioluminescence technique was used to quantify the local glucose concentration in the tissue surrounding subcutaneously implanted polyurethane material and surrounding glucose sensors. In addition, some implants were coated with a single layer of adipose-derived stromal cells (ASCs) because these cells improve the wound-healing response around biomaterials. METHODS: Control and ASC-coated implants were implanted subcutaneously in rats for 1 or 8 weeks (polyurethane) or for 1 week only (glucose sensors). Tissue biopsies adjacent to the implant were immediately frozen at the time of explant. Cryosections were assayed for glucose concentration profile using the bioluminescence technique. RESULTS: For the polyurethane samples, no significant differences in glucose concentration within 100 μm of the implant surface were found between bare and ASC-coated implants at 1 or 8 weeks. A glucose concentration gradient was demonstrated around the glucose sensors. For all sensors, the minimum glucose concentration of approximately 4 mM was found at the implant surface and increased with distance from the sensor surface until the glucose concentration peaked at approximately 7 mM at 100 μm. Then the glucose concentration decreased to 5.5-6.5 mM more than 100 μmm from the surface. CONCLUSIONS: The ASC attachment to polyurethane and to glucose sensors did not change the glucose profiles in the tissue surrounding the implants. Although most glucose sensors incorporate a diffusion barrier to reduce the gradient of glucose and oxygen in the tissue, it is typically assumed that there is no steep glucose gradient around the sensors. However, a glucose gradient was observed around the sensors. A more complete understanding of glucose transport and concentration gradients around sensors is critical.Item Open Access Characterization of Polyethersulfone (PES) and Polyvinylidene Difluoride (PVDF) Resistive Membranes under In Vitro Staphylococcus aureus Challenge(2014) Nakasone, SandraBacterial colonization of a medical device has been seen to precede clinical infection as well as adversely affect function of the indwelling device. This is a major cause of implant failure with the most common bacterial infections being due to Staphylococcus aureus. This strain has been known to be anti-biotic resistant, therefore it is very important to test and find biomaterials with low bacterial adhesion properties to avoid device-associated infections when implanted into the body. In the present study, three specific aims were preformed to characterize the performance of Polyethersulfone (PES) and polyvinylidene difluoride (PVDF) membranes. These polymeric membranes are commonly used in nanofiltration applications in the water and waste water market; therefore they are of high interest for use in the medical device market. PES and PVDF hydrophilic filter disks of 25mm diameter were purchased from Millipore with pore sizes of 0.22 µm. Bacterial migration (N=4), bacterial adhesion (N=4) and outflow resistance (N=4) studies were tested for each filter. Bacteria cultured to a concentration of 1 McFarland (3x108 cells/mL) were used for migration and adhesion studies. Migration was tested by pumping bacterial broth through the membranes and collecting the perfusate to quantify the bacterial migration. Adhesion studies were quantified by incubating filters in bacterial broth for 24hrs and plating attached bacteria after detachment by sonication. SEM images were taken for visual analysis of bacteria and filters. Lastly, outflow resistance was measured by pumping deionized water while recording pressure readings throughout 5 minutes. Results of the studies demonstrated that bacteria did not migrate through both PES and PVDF filters, thus properly filtering S. aureus cells. PES membranes were found to have more bacterial adherence to the surface and a lower outflow resistance than PVDF. Both filters could be considered to be used as a part of biomedical devices depending on the specific applications and resistance requirement. However, further studies are needed to inhibit bacterial adherence such as antibacterial coatings or incorporating antimicrobial compounds within polymeric biomaterials. The use of selenium as an antibacterial agent in biomedical devices has sparked a great interest in recent years this, incorporating this in PES and PVDF membranes are the next goal for these studies.
Item Open Access Characterization of the Foreign Body Response to Common Surgical Biomaterials in a Murine Model.(European journal of plastic surgery, 2017-11) Ibrahim, Mohamed; Bond, Jennifer; Medina, Manuel A; Chen, Lei; Quiles, Carlos; Kokosis, George; Bashirov, Latif; Klitzman, Bruce; Levinson, HowardBACKGROUND:Implanted biomaterials are subject to a significant reaction from the host, known as the foreign body response (FBR). We quantified the FBR to five materials following subcutaneous implantation in mice. MATERIALS AND METHODS:Polyvinyl alcohol (PVA) and silicone sheets are considered highly biocompatible biomaterials and were cut into 8mm-diameter disks. Expanded PTFE (ePTFE)and polypropylene are also widely used biocompatible biomaterials and were cut into 2cm-long cylinders. Cotton was selected as a negative control material that would invoke an intense FBR, was cut into disks and implanted. The implants were inserted subcutaneously into female C57BL/6 mice. On post-implantation days 14, 30, 60, 90 and 180, implants were retrieved. Cellularity was assessed with DAPI stain, collagen with Masson's trichrome stain. mast cells with toluidine-blue, macrophages with F4/80 immunohistochemical-stain, and capsular thickness and foreign body giant cells with hematoxylin & eosin. RESULTS:DAPI revealed a significantly increased cellularity in both PVA andsilicone, and ePTFE had the lowest cell density. Silicone showed the lowest cellularity at d14 and d90 whereas ePTFE showed the lowest cellularity at days 30, 60, and 180. Masson's trichrome staining demonstrated no apparent difference in collagen. Toluidine blue showed no differences in mast cells. There were, however, fewer macrophages associated with ePTFE. On d14, PVA had highest number of macrophages, whereas polypropylene had the highest number at all time points after d14. Giant cells increased earlier and gradually decreased later. On d90, PVA exhibited a significantly increased number of giant cells compared to polypropylene and silicone. Silicone consistently formed the thinnest capsule throughout all time points. On d14, cotton had formed the thickest capsule. On d30 polypropylenehas formed thickest capsule and on days 60, 90 and 180, PVA had formed thickest capsule. CONCLUSION:These data reveal differences in capsule thickness and cellular response in an implant-related manor, indicating that fibrotic reactions to biomaterials are implant specific and should be carefully considered when performing studies on fibrosis when biomaterials are being used.Item Open Access Enhanced Drug Delivery to the Skin Using Liposomes.(Plastic and reconstructive surgery. Global open, 2018-07-09) Blueschke, Gert; Boico, Alina; Negussie, Ayele H; Yarmolenko, Pavel; Wood, Bradford J; Spasojevic, Ivan; Fan, Ping; Erdmann, Detlev; Schroeder, Thies; Sauerbier, Michael; Klitzman, BruceEnhancing drug delivery to the skin has importance in many therapeutic strategies. In particular, the outcome in vascularized composite allotransplantation mainly depends on systemic immunosuppression to prevent and treat episodes of transplant rejection. However, the side effects of systemic immunosuppression may introduce substantial risk to the patient and are weighed against the expected benefits. Successful enhancement of delivery of immunosuppressive agents to the most immunogenic tissues would allow for a reduction in systemic doses, thereby minimizing side effects. Nanoparticle-assisted transport by low temperature-sensitive liposomes (LTSLs) has shown some benefit in anticancer therapy. Our goal was to test whether delivery of a marker agent to the skin could be selectively enhanced.In an in vivo model, LTSLs containing doxorubicin (dox) as a marker were administered intravenously to rats that were exposed locally to mild hyperthermia. Skin samples of the hyperthermia treated hind limb were compared with skin of the contralateral normothermia hind limb. Tissue content of dox was quantified both via high-performance liquid chromatography and via histology in skin and liver.The concentration of dox in hyperthermia-treated skin was significantly elevated over both normothermic skin and liver. (P < 0.02).We show here that delivery of therapeutics to the skin can be targeted and enhanced using LTSLs. Targeting drug delivery with this method may reduce the systemic toxicity seen in a systemic free-drug administration. Development of more hydrophilic immunosuppressants in the future would increase the applicability of this system in the treatment of rejection reactions in vascularized composite allotransplantation. The treatment of other skin condition might be another potential application.Item Open Access In vitro fluid dynamics of the Ahmed glaucoma valve modified with expanded polytetrafluoroethylene.(Curr Eye Res, 2011-02) DeCroos, Francis Char; Kondo, Yuji; Mordes, Daniel; Lee, Maria Regina; Ahmad, Sameer; Asrani, Sanjay; Allingham, R Rand; Olbrich, Kevin C; Klitzman, BrucePURPOSE: Long-term intraocular pressure reduction by glaucoma drainage devices (GDDs) is often limited by the fibrotic capsule that forms around them. Prior work demonstrates that modifying a GDD with a porous membrane promotes a vascularized and more permeable capsule. This work examines the in vitro fluid dynamics of the Ahmed valve after enclosing the outflow tract with a porous membrane of expanded polytetrafluoroethylene (ePTFE). MATERIALS AND METHODS: The control and modified Ahmed implants (termed porous retrofitted implant with modified enclosure or PRIME-Ahmed) were submerged in saline and gelatin and perfused in a system that monitored flow (Q) and pressure (P). Flow rates of 1-50 μl/min were applied and steady state pressure recorded. Resistance was calculated by dividing pressure by flow. RESULTS: Modifying the Ahmed valve implant outflow with expanded ePTFE increased pressure and resistance. Pressure at a flow of 2 μl/min was increased in the PRIME-Ahmed (11.6 ± 1.5 mm Hg) relative to the control implant (6.5 ± 1.2 mm Hg). Resistance at a flow of 2 μl/min was increased in the PRIME-Ahmed (5.8 ± 0.8 mm Hg/μl/min) when compared to the control implant (3.2 ± 0.6 mm Hg/μl/min). CONCLUSIONS: Modifying the outflow tract of the Ahmed valve with a porous membrane adds resistance that decreases with increasing flow. The Ahmed valve implant behaves as a variable resistor. It is partially open at low pressures and provides reduced resistance at physiologic flow rates.Item Open Access Injectable Phosphorescence-based Oxygen Biosensors Identify Post Ischemic Reactive Hyperoxia.(Scientific reports, 2017-08-15) Chien, Jennifer S; Mohammed, Mahmoud; Eldik, Hysem; Ibrahim, Mohamed M; Martinez, Jeremy; Nichols, Scott P; Wisniewski, Natalie; Klitzman, BruceNovel injectable biosensors were used to measure interstitial oxygenation before, during, and after transient ischemia. It is well known that reactive hyperemia occurs following a period of ischemia. However, increased blood flow does not necessarily mean increased oxygen tension in the tissue. Therefore, the purpose of this study was to test the hypothesis that tissue reactive hyperoxia occurs following release of hind-limb tourniquet occlusions. Rats were injected with bilateral hind-limb biosensors and were simultaneously subjected to a unilateral femoral vessel ligation. After approximately one and three months, the rats underwent a series of oxygenation challenges, including transient hind-limb tourniquet occlusion. Along with the biosensors, near infrared spectroscopy was used to measure percent oxyhemoglobin in capillaries and laser Doppler flowmetry was used to measure blood flow. Post-occlusion reactive hyperemia was observed. It was accompanied by tissue reactive hyperoxia, affirming that the post-occlusion oxygen supply must have exceeded the expected increased oxygen consumption. The measurement of the physiologic phenomenon of reactive hyperoxia could prove clinically beneficial for both diagnosis and optimizing therapy.Item Open Access Peptide interfacial biomaterials improve endothelial cell adhesion and spreading on synthetic polyglycolic acid materials.(Ann Biomed Eng, 2010-06) Huang, Xin; Zauscher, Stefan; Klitzman, Bruce; Truskey, George A; Reichert, William M; Kenan, Daniel J; Grinstaff, Mark WResorbable scaffolds such as polyglycolic acid (PGA) are employed in a number of clinical and tissue engineering applications owing to their desirable property of allowing remodeling to form native tissue over time. However, native PGA does not promote endothelial cell adhesion. Here we describe a novel treatment with hetero-bifunctional peptide linkers, termed "interfacial biomaterials" (IFBMs), which are used to alter the surface of PGA to provide appropriate biological cues. IFBMs couple an affinity peptide for the material with a biologically active peptide that promotes desired cellular responses. One such PGA affinity peptide was coupled to the integrin binding domain, Arg-Gly-Asp (RGD), to build a chemically synthesized bimodular 27 amino acid peptide that mediated interactions between PGA and integrin receptors on endothelial cells. Quartz crystal microbalance with dissipation monitoring (QCMD) was used to determine the association constant (K (A) 1 x 10(7) M(-1)) and surface thickness (~3.5 nm). Cell binding studies indicated that IFBM efficiently mediated adhesion, spreading, and cytoskeletal organization of endothelial cells on PGA in an integrin-dependent manner. We show that the IFBM peptide promotes a 200% increase in endothelial cell binding to PGA as well as 70-120% increase in cell spreading from 30 to 60 minutes after plating.Item Metadata only Stiffness of Protease Sensitive and Cell Adhesive PEG Hydrogels Promotes Neovascularization In Vivo.(Ann Biomed Eng, 2017-06) Schweller, Ryan M; Wu, Zi Jun; Klitzman, Bruce; West, Jennifer LMaterials that support the assembly of new vasculature are critical for regenerative medicine. Controlling the scaffold's mechanical properties may help to optimize neovascularization within implanted biomaterials. However, reducing the stiffness of synthetic hydrogels usually requires decreasing polymer densities or increasing chain lengths, both of which accelerate degradation. We synthesized enzymatically-degradable poly(ethylene glycol) hydrogels with compressive moduli from 2 to 18 kPa at constant polymer density, chain length, and proteolytic degradability by inserting an allyloxycarbonyl functionality into the polymer backbone. This group competes with acrylates during photopolymerization to alter the crosslink network structure and reduce the hydrogel's stiffness. Hydrogels that incorporated (soft) or lacked (stiff) this group were implanted subcutaneously in rats to investigate the role of stiffness on host tissue interactions. Changes in tissue integration were quantified after 4 weeks via the hydrogel area replaced by native tissue (tissue area fraction), yielding 0.136 for softer vs. 0.062 for stiffer hydrogels. Including soluble FGF-2 and PDGF-BB improved these responses to 0.164 and 0.089, respectively. Softer gels exhibited greater vascularization with 8.6 microvessels mm(-2) compared to stiffer gels at 2.4 microvessels mm(-2). Growth factors improved this to 11.2 and 4.9 microvessels mm(-2), respectively. Softer hydrogels tended to display more sustained responses, promoting neovascularization and tissue integration in synthetic scaffolds.Item Open Access The effect of nitric oxide surface flux on the foreign body response to subcutaneous implants.(Biomaterials, 2012-09) Nichols, Scott P; Koh, Ahyeon; Brown, Nga L; Rose, Michael B; Sun, Bin; Slomberg, Danielle L; Riccio, Daniel A; Klitzman, Bruce; Schoenfisch, Mark HAlthough the release of nitric oxide (NO) from biomaterials has been shown to reduce the foreign body response (FBR), the optimal NO release kinetics and doses remain unknown. Herein, polyurethane-coated wire substrates with varying NO release properties were implanted into porcine subcutaneous tissue for 3, 7, 21 and 42 d. Histological analysis revealed that materials with short NO release durations (i.e., 24 h) were insufficient to reduce the collagen capsule thickness at 3 and 6 weeks, whereas implants with longer release durations (i.e., 3 and 14 d) and greater NO payloads significantly reduced the collagen encapsulation at both 3 and 6 weeks. The acute inflammatory response was mitigated most notably by systems with the longest duration and greatest dose of NO release, supporting the notion that these properties are most critical in circumventing the FBR for subcutaneous biomedical applications (e.g., glucose sensors).Item Open Access The Effect of Porous Poly-L-Lactic Acid Coatings on Tissue Response and Subsequent Glucose Sensor Performance(2009) Koschwanez, Heidi E.Efforts to create a reliable, long–term implantable glucose sensor have been stymied by the effects of the foreign body response and wound healing that introduce delayed response times as well as unpredictable sensor performance. Loss of vascularization from fibrotic encapsulation around implanted sensors is purported as a key contributor to sensor failure, as glucose and oxygen transport to the sensor becomes impeded. Improving sensor performance by increasing angiogenesis and/or reducing capsule thickness using tissue-modifying textured coatings is attractive because texturing is not dependent upon a depletable drug reservoir. A significant range of materials and pore sizes are capable of promoting angiogenesis and reducing capsule thickness, provided pores have open-architecture with dimensions sufficiently large enough to allow inflammatory cell infiltration.
Poly–L–lactic acid was gas foamed/salt leached with ammonium bicarbonate to produce porous coatings for Medtronic MiniMed SOF–sensor glucose sensors. Coating properties included 30μm pore diameters, 90% porosity, and 50μm wall thickness. Cytotoxicity, degradation, and sensor response time studies were performed to ensure the porous coatings were non–toxic and negligibly retarded glucose diffusion prior to in vivo testing. Histology was used to evaluate angiogenesis and collagen deposition adjacent to porous coated and bare (i.e. smooth, uncoated) non–functional sensor strips after three weeks in the rat dorsal subcutis. Functional Medtronic glucose sensors, with and without porous coatings, were percutaneously implanted in the rat dorsum to assess if the angiogenic–inducing properties observed around the non–functional porous coated sensor strips translated into stable, non–attenuated sensor signals over two and three weeks. MiniLinkTM transmitters were attached to the rats, permitting continuous glucose monitoring. Vessel counts and collagen deposition adjacent to sensors were determined from histological analysis. A one–sided dorsal window model was developed to further evaluate the interplay between vascularization and sensor performance Sensors were inserted beneath the windows, allowing visualization of microvascular changes adjacent to sensor surfaces, with simultaneous evaluation of how vascular changes impacted interstitial glucose monitoring.
Porous coating did have angiogenic–inducing effects on the surrounding tissue. When fully implanted in the rat dorsum, sensor strips with porous coatings induced three–fold more vessels within 100μm2 of the sensor strip surface after three weeks and two-fold more cumulative vessel lengths within 1mm2 after two weeks, compared to bare surfaces. In contrast, when percutaneously implanted in the rat dorsum, porous coated and bare sensors were equally highly vascularized, with two–fold more vessels than fully implanted bare sensors.
Despite increased angiogenesis adjacent to percutaneous sensors, sensor signal attenuation occurred over 14 days, suggesting that angiogenesis plays a secondary role in maintaining sensor function. Percutaneously implanted porous coated sensors had greater reductions in baseline current (20 to 50+%) over two weeks than bare sensors (10 to 30%). Mechanical stresses imposed by percutaneous tethering may override the beneficial effects of porous coatings. Furthermore, integration of the porous coating with the surrounding tissue may have increased tissue tearing at the porous coating–tissue, increasing inflammation and collagen deposition resulting in greater signal attenuation compared with bare sensors. Future investigations of the role mechanical irritation has on wound healing around percutaneous glucose sensors are warranted.
Item Open Access The Tissue Response to Infectious Burden and Implantable Devices in Healthy and Diabetic Animal Models(2015) Brown, Nga LePerformance of biomedical implants has been hindered by fibrosis, infection, and deficient tissue integration due in part to the body's foreign body response. In addition, diabetes mellitus is affecting a greater number of people worldwide and in the United States. As the percentage of the population affected by diabetes increases, a larger fraction of these implanted devices will be placed in diabetic patients. Unfortunately, diabetes is often complicated by poor wound healing and a greater risk of infection, issues that could adversely affect proper acceptance of an implant. Diabetic animal models are useful in studying the response to infection as well as the tissue response to an implanted device. Therapies such as nitric oxide release have been applied to indwelling devices to mediate the foreign body response and improve the wound healing response around implants. Particularly relevant to diabetic patients are implantable glucose sensors, and so determining the diabetic tissue response to these devices is crucial to improving their lifetime and performance.
A novel outcome-based streptozotocin dosing regimen was developed to induce Type 1 diabetes in a rodent model. Male CD (Sprague-Dawley type) rats weighing 150-200 g were given three consecutive daily doses of 40 mg/kg streptozotocin (STZ) on Days 1, 2, and 3. On Day 5, tail vein blood glucose was checked. If blood glucose was not within the target diabetic range of 350-600 mg/dl, rats received an additional dose of STZ. This procedure was repeated every 48 hours until all rats achieved target hyperglycemia. Control rats were given similar doses of vehicle (saline/citrate), which had no effect on blood glucose. After the last injection of streptozotocin, two weeks were allowed to ensure the full effects of the diabetic state would be present at device implantation. Blood glucose was measured every 2 days for diabetics and 4 days for controls for the duration of the experiment. The developed diabetic model resulted in a stable hyperglycemia for the duration of the experiment (in some cases, up to 2 months). Animals also exhibited typical symptoms of diabetes, such as minimal changes in weight, excessive thirst, and polyuria.
Infection response in the presence of implanted devices was investigated in healthy and diabetic animal models. In the healthy animal model, control stainless steel compression plates and plates coated with a nitric-oxide releasing xerogel (20% AHAP) were attached to the femurs of 12 adult rabbits. Both femurs were inoculated with 3x106 CFU MSSA (methicillin-sensitive Staph aureus) for a period of 20 minutes before the surgical sites were sutured. After 7 days, the wound, device, and a portion of bone were cultured. A muscle biopsy was removed and homogenized to quantify bacterial infection. Since the microbiologic data were not normally distributed, they were compared using an unpaired Wilcoxon Rank Sum Test. No significant differences in bacterial burden were observed between the control and NO-eluting devices, however the study did find a high correlation of temperature of the adjacent muscle at implantation with the ensuing bacterial content. In the diabetic animal model, a novel dosing regimen of streptozotocin based on a target blood glucose of 350-600 mg/dl was used to induce type-1 diabetes. Stable hyperglycemia was maintained for 21 days. Two weeks after achieving the target hyperglycemia, stainless steel fracture plates were secured to each femur with stainless steel screws approximately 3 mm in length. The implant site on the right side of the animal was inoculated with 3 x 107 CFU of methicillin-sensitive S. aureus while the left side served as a control. After seven days, quantitative bacterial count was performed at explantation and no cross-over of bacteria was detected from the inoculated side to the non-inoculated side. Infection after S aureus inoculation in the presence of an implanted device was significantly higher in diabetic animals when compared to that of control animals (p = 0.0003, Wilcoxin Rank-Sum Test) supporting the hypothesis that diabetes adversely affects the ability to fight infection in the presence of an indwelling device in an animal model. There was not a significant difference detected in the infectious burden for the non-inoculated limb (left) between the diabetic and non-diabetic groups when compared using a Wilcoxon Rank-Sum Test (p = 0.0682), however this near-significance suggests that even in the absence of an introduced inoculum, diabetes increases infection susceptibility in the presence of an implant.
Nitric oxide (NO) release can be used to mediate the foreign body response around implanted devices. NO also has antibacterial properties that may enhance the body's immune response to implant-associated infection. Additionally, diabetic wounds are characterized by nitric oxide deficiency, and thus NO supplementation may promote better wound healing and implant acceptance in diabetics. The use of nitric oxide to modulate the tissue response to indwelling implants was explored in two studies. In vivo glucose recovery of subcutaneously implanted NO-releasing microdialysis probes was evaluated in a healthy rat model using saturated NO solutions that provided a steady release of NO. A constant NO flux of 162 pmol cm-2 s-1 was perfused through the probe membrane for 8 hours daily. The in vivo effects of increased localized NO were evaluated by monitoring glucose recovery over a 14-day period. Beginning at 7 days, significant differences in glucose recovery between the control and NO-releasing probes were observed. At the 14-day time point, histological analysis revealed decreased inflammatory cell density at the probe surface and a thinner collagen capsule. In the second study, polyurethane-coated wires with varying NO release properties were implanted subcutaneously in 17 Yorkshire piglets with time points of 3, 7, 21, and 42 days. To create the NO-releasing coating, the NO-releasing vehicle (i.e., PROLI/NO, AEAP3 or MPTMS nanoparticles) was dispersed into EtOH (2.5 mL) at concentrations of 36 or 72 mg/mL. This solution was then mixed with an equal volume of 50:50 wt% HPU/TPU (160 mg/mL total PU). Effects of NO release were analyzed using histological data. These data were analyzed using a non-parametric Wilcoxon rank-sum test. Coatings with short NO release durations (i.e., 24 h) failed to reduce collagen capsule thickness at 3 and 6 weeks. Longer release durations (3 and 14d) however significantly reduced collagen capsule thickness at longer timepoints. The acute inflammatory response was significantly affected by coatings with the longest duration and greatest dose of NO release. However these benefits were not realized at later timepoints, suggesting that NO must be actively released in order to influence inflammatory response.
The tissue response to percutaneously implanted glucose sensors was investigated in healthy and diabetic rats. A multi-dose regimen of streptozotocin was used to induce diabetes in experimental rats. Three types of functional, implantable glucose sensors, supplied by Medtronic® were used: SofTM sensor, EnliteTM sensor, and Enlite 2TM sensor. The sensors were percutaneously implanted in the rat dorsum subcutaneous space. MiniLinkTM transmitters were attached to the rats, permitting continuous glucose monitoring. At 3 days, 1 week, and 4 weeks, tissue directly adjacent to the sensors was evaluated for collagen encapsulation, density of any collagen encapsulation, inflammatory response as measured via inflammatory cell density, and microvessel density. These endpoints were evaluated histologically via Masson's trichrome, Hoechst, H&E, and CD31 staining. Additionally, continuous functional sensor data was evaluated for sensor accuracy, attenuation, and lag time. Histological analyses revealed few significant differences in collagen thickness among different sensors, in different tissue types, or over time. In general, Masson's trichrome-stained images seem to suggest a balance between collagen capsule formation and inflammatory cell density. As inflammation increased adjacent to sensors over time, collagen capsule thickness decreased somewhat and stabilized. Collagen capsule formation was most evident adjacent to the plastic tubing portion of the sensor whereas inflammation was greatest adjacent to the sensing electrode. Likewise, few significant differences in collagen density index (CDI) were observed among sensor types, tissue types, or over time. CDI remained relatively constant over time for all sensors. Analysis of inflammatory cell density in general revealed a greater inflammatory response adjacent to percutaneous Enlite sensors, though these results were not significant. Additionally, inflammatory cell density was generally greater adjacent to non-diabetic sensors, however this result was also not significant. Inflammatory cell density increased or remained stable over time for all sensor types, suggesting that the presence of percutaneously-implanted sensors produces a chronic inflammatory response that does not resolve. Vascularity adjacent to implanted sensors remained generally stable over time, sometimes decreasing but not significantly. At the 1-month timepoint, no significant differences in vasculature were seen among sensor types. A balance also appears to exist for microvessel and inflammatory cell densities. The non-diabetic percutaneous Enlite sensor had the greatest microvessel density at earlier timepoints, while also having the greatest inflammatory cell density. However, at later timepoints, microvessel density decreased somewhat as inflammation increased somewhat. Finally, analysis of sensor performance showed significant sensor failure at longer timepoints. Sensitivity decreased somewhat for all sensors except for the non-diabetic Enlite sensor, which in general had greater overall sensitivity in comparison to the non-diabetic Sof sensor. Lag time was relatively similar among all sensor types, tissue types, and over time. MARD values were considerably lower for diabetic sensors for the Day 1 bolus, but were generally similar for all sensors at the 1-week bolus. These results suggest that the diabetic foreign body response, while somewhat decreased, is not significantly different than that in non-diabetic tissue. In addition, the design of the EnliteTM and Enlite 2TM sensors promoted a more aggressive inflammatory response despite being smaller and more flexible in design. Most evident from the results was the presence of a chronic inflammatory response adjacent to the percutaneously-implanted sensors, which likely contributed to the high rate of sensor failure over time.
Item Open Access Tissue engraftment of hypoxic-preconditioned adipose-derived stem cells improves flap viability.(Wound Repair Regen, 2012-11) Hollenbeck, Scott T; Senghaas, Annika; Komatsu, Issei; Zhang, Ying; Erdmann, Detlev; Klitzman, BruceAdipose-derived stem cells (ASCs) have the ability to release multiple growth factors in response to hypoxia. In this study, we investigated the potential of ASCs to prevent tissue ischemia. We found conditioned media from hypoxic ASCs had increased levels of vascular endothelial growth factor (VEGF) and enhanced endothelial cell tubule formation. To investigate the effect of injecting rat ASCs into ischemic flaps, 21 Lewis rats were divided into three groups: control, normal oxygen ASCs (10(6) cells), and hypoxic preconditioned ASCs (10(6) cells). At the time of flap elevation, the distal third of the flap was injected with the treatment group. At 7 days post flap elevation, flap viability was significantly improved with injection of hypoxic preconditioned ASCs. Cluster of differentiation-31-positive cells were more abundant along the margins of flaps injected with ASCs. Fluorescent labeled ASCs localized aside blood vessels or throughout the tissue, dependent on oxygen preconditioning status. Next, we evaluated the effect of hypoxic preconditioning on ASC migration and chemotaxis. Hypoxia did not affect ASC migration on scratch assay or chemotaxis to collagen and laminin. Thus, hypoxic preconditioning of injected ASCs improves flap viability likely through the effects of VEGF release. These effects are modest and represent the limitations of cellular and growth factor-induced angiogenesis in the acute setting of ischemia.Item Open Access Tissue-Integrating Oxygen Sensors: Continuous Tracking of Tissue Hypoxia.(Advances in experimental medicine and biology, 2017-01) Wisniewski, Natalie A; Nichols, Scott P; Gamsey, Soya J; Pullins, Steve; Au-Yeung, Kit Y; Klitzman, Bruce; Helton, Kristen LWe describe a simple method of tracking oxygen in real-time with injectable, tissue-integrating microsensors. The sensors are small (500 μm × 500 μm × 5 mm), soft, flexible, tissue-like, biocompatible hydrogel s that have been shown to overcome the foreign body response for long-term sensing. The sensors are engineered to change luminescence in the presence of oxygen or other analytes and function for months to years in the body. A single injection followed by non-invasive monitoring with a hand-held or wearable Bluetooth optical reader enables intermittent or continuous measurements. Proof of concept for applications in high altitude, exercise physiology, vascular disease, stroke, tumors, and other disease states have been shown in mouse, rat and porcine models. Over 90 sensors have been studied to date in humans. These novel tissue-integrating sensors yield real-time insights in tissue oxygen fluctuations for research and clinical applications.