Browsing by Author "Kobayashi, Yoshihiko"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access Chromatin Remodeling of Colorectal Cancer Liver Metastasis is Mediated by an HGF-PU.1-DPP4 Axis.(Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2021-10) Wang, Lihua; Wang, Ergang; Prado Balcazar, Jorge; Wu, Zhenzhen; Xiang, Kun; Wang, Yi; Huang, Qiang; Negrete, Marcos; Chen, Kai-Yuan; Li, Wei; Fu, Yujie; Dohlman, Anders; Mines, Robert; Zhang, Liwen; Kobayashi, Yoshihiko; Chen, Tianyi; Shi, Guizhi; Shen, John Paul; Kopetz, Scott; Tata, Purushothama Rao; Moreno, Victor; Gersbach, Charles; Crawford, Gregory; Hsu, David; Huang, Emina; Bu, Pengcheng; Shen, XilingColorectal cancer (CRC) metastasizes mainly to the liver, which accounts for the majority of CRC-related deaths. Here it is shown that metastatic cells undergo specific chromatin remodeling in the liver. Hepatic growth factor (HGF) induces phosphorylation of PU.1, a pioneer factor, which in turn binds and opens chromatin regions of downstream effector genes. PU.1 increases histone acetylation at the DPP4 locus. Precise epigenetic silencing by CRISPR/dCas9KRAB or CRISPR/dCas9HDAC revealed that individual PU.1-remodeled regulatory elements collectively modulate DPP4 expression and liver metastasis growth. Genetic silencing or pharmacological inhibition of each factor along this chromatin remodeling axis strongly suppressed liver metastasis. Therefore, microenvironment-induced epimutation is an important mechanism for metastatic tumor cells to grow in their new niche. This study presents a potential strategy to target chromatin remodeling in metastatic cancer and the promise of repurposing drugs to treat metastasis.Item Open Access Epigenetic basis of oncogenic-Kras-mediated epithelial-cellular proliferation and plasticity.(Developmental cell, 2022-02) Kadur Lakshminarasimha Murthy, Preetish; Xi, Rui; Arguijo, Diana; Everitt, Jeffrey I; Kocak, Dewran D; Kobayashi, Yoshihiko; Bozec, Aline; Vicent, Silvestre; Ding, Shengli; Crawford, Gregory E; Hsu, David; Tata, Purushothama Rao; Reddy, Timothy; Shen, XilingOncogenic Kras induces a hyper-proliferative state that permits cells to progress to neoplasms in diverse epithelial tissues. Depending on the cell of origin, this also involves lineage transformation. Although a multitude of downstream factors have been implicated in these processes, the precise chronology of molecular events controlling them remains elusive. Using mouse models, primary human tissues, and cell lines, we show that, in Kras-mutant alveolar type II cells (AEC2), FOSL1-based AP-1 factor guides the mSWI/SNF complex to increase chromatin accessibility at genomic loci controlling the expression of genes necessary for neoplastic transformation. We identified two orthogonal processes in Kras-mutant distal airway club cells. The first promoted their transdifferentiation into an AEC2-like state through NKX2.1, and the second controlled oncogenic transformation through the AP-1 complex. Our results suggest that neoplasms retain an epigenetic memory of their cell of origin through cell-type-specific transcription factors. Our analysis showed that a cross-tissue-conserved AP-1-dependent chromatin remodeling program regulates carcinogenesis.Item Open Access Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair.(eLife, 2021-07-19) Ide, Shintaro; Kobayashi, Yoshihiko; Ide, Kana; Strausser, Sarah A; Abe, Koki; Herbek, Savannah; O'Brien, Lori L; Crowley, Steven D; Barisoni, Laura; Tata, Aleksandra; Tata, Purushothama Rao; Souma, TomokazuOverwhelming lipid peroxidation induces ferroptotic stress and ferroptosis, a non-apoptotic form of regulated cell death that has been implicated in maladaptive renal repair in mice and humans. Using single-cell transcriptomic and mouse genetic approaches, we show that proximal tubular (PT) cells develop a molecularly distinct, pro-inflammatory state following injury. While these inflammatory PT cells transiently appear after mild injury and return to their original state without inducing fibrosis, after severe injury they accumulate and contribute to persistent inflammation. This transient inflammatory PT state significantly downregulates glutathione metabolism genes, making the cells vulnerable to ferroptotic stress. Genetic induction of high ferroptotic stress in these cells after mild injury leads to the accumulation of the inflammatory PT cells, enhancing inflammation and fibrosis. Our study broadens the roles of ferroptotic stress from being a trigger of regulated cell death to include the promotion and accumulation of proinflammatory cells that underlie maladaptive repair.Item Open Access Human distal lung maps and lineage hierarchies reveal a bipotent progenitor.(Nature, 2022-04) Kadur Lakshminarasimha Murthy, Preetish; Sontake, Vishwaraj; Tata, Aleksandra; Kobayashi, Yoshihiko; Macadlo, Lauren; Okuda, Kenichi; Conchola, Ansley S; Nakano, Satoko; Gregory, Simon; Miller, Lisa A; Spence, Jason R; Engelhardt, John F; Boucher, Richard C; Rock, Jason R; Randell, Scott H; Tata, Purushothama RaoMapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.Item Open Access Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and Pneumocyte Dysfunction.(Cell stem cell, 2020-10-21) Katsura, Hiroaki; Sontake, Vishwaraj; Tata, Aleksandra; Kobayashi, Yoshihiko; Edwards, Caitlin E; Heaton, Brook E; Konkimalla, Arvind; Asakura, Takanori; Mikami, Yu; Fritch, Ethan J; Lee, Patty J; Heaton, Nicholas S; Boucher, Richard C; Randell, Scott H; Baric, Ralph S; Tata, Purushothama RaoCoronavirus infection causes diffuse alveolar damage leading to acute respiratory distress syndrome. The absence of ex vivo models of human alveolar epithelium is hindering an understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here, we report a feeder-free, scalable, chemically defined, and modular alveolosphere culture system for the propagation and differentiation of human alveolar type 2 cells/pneumocytes derived from primary lung tissue. Cultured pneumocytes express the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor angiotensin-converting enzyme receptor type-2 (ACE2) and can be infected with virus. Transcriptome and histological analysis of infected alveolospheres mirror features of COVID-19 lungs, including emergence of interferon (IFN)-mediated inflammatory responses, loss of surfactant proteins, and apoptosis. Treatment of alveolospheres with IFNs recapitulates features of virus infection, including cell death. In contrast, alveolospheres pretreated with low-dose IFNs show a reduction in viral replication, suggesting the prophylactic effectiveness of IFNs against SARS-CoV-2. Human stem cell-based alveolospheres, thus, provide novel insights into COVID-19 pathogenesis and can serve as a model for understanding human respiratory diseases.Item Open Access Multi-apical polarity of alveolar stem cells and their dynamics during lung development and regeneration.(iScience, 2022-10) Konkimalla, Arvind; Konishi, Satoshi; Kobayashi, Yoshihiko; Kadur Lakshminarasimha Murthy, Preetish; Macadlo, Lauren; Mukherjee, Ananya; Elmore, Zachary; Kim, So-Jin; Pendergast, Ann Marie; Lee, Patty J; Asokan, Aravind; Knudsen, Lars; Bravo-Cordero, Jose Javier; Tata, Aleksandra; Tata, Purushothama RaoEpithelial cells of diverse tissues are characterized by the presence of a single apical domain. In the lung, electron microscopy studies have suggested that alveolar type-2 epithelial cells (AT2s) en face multiple alveolar sacs. However, apical and basolateral organization of the AT2s and their establishment during development and remodeling after injury repair remain unknown. Thick tissue imaging and electron microscopy revealed that a single AT2 can have multiple apical domains that enface multiple alveoli. AT2s gradually establish multi-apical domains post-natally, and they are maintained throughout life. Lineage tracing, live imaging, and selective cell ablation revealed that AT2s dynamically reorganize multi-apical domains during injury repair. Single-cell transcriptome signatures of residual AT2s revealed changes in cytoskeleton and cell migration. Significantly, cigarette smoke and oncogene activation lead to dysregulation of multi-apical domains. We propose that the multi-apical domains of AT2s enable them to be poised to support the regeneration of a large array of alveolar sacs.Item Open Access Sex differences in resilience to ferroptosis underlie sexual dimorphism in kidney injury and repair.(Cell reports, 2022-11) Ide, Shintaro; Ide, Kana; Abe, Koki; Kobayashi, Yoshihiko; Kitai, Hiroki; McKey, Jennifer; Strausser, Sarah A; O'Brien, Lori L; Tata, Aleksandra; Tata, Purushothama Rao; Souma, TomokazuIn both humans and mice, repair of acute kidney injury is worse in males than in females. Here, we provide evidence that this sexual dimorphism results from sex differences in ferroptosis, an iron-dependent, lipid-peroxidation-driven regulated cell death. Using genetic and single-cell transcriptomic approaches in mice, we report that female sex confers striking protection against ferroptosis, which was experimentally induced in proximal tubular (PT) cells by deleting glutathione peroxidase 4 (Gpx4). Single-cell transcriptomic analyses further identify the NFE2-related factor 2 (NRF2) antioxidant protective pathway as a female resilience mechanism against ferroptosis. Genetic inhibition and pharmacological activation studies show that NRF2 controls PT cell fate and plasticity by regulating ferroptosis. Importantly, pharmacological NRF2 activation protects male PT cells from ferroptosis and improves cellular plasticity as in females. Our data highlight NRF2 as a potential therapeutic target to prevent failed renal repair after acute kidney injury in both sexes by modulating cellular plasticity.Item Open Access Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics.(Nature medicine, 2021-03) Muus, Christoph; Luecken, Malte D; Eraslan, Gökcen; Sikkema, Lisa; Waghray, Avinash; Heimberg, Graham; Kobayashi, Yoshihiko; Vaishnav, Eeshit Dhaval; Subramanian, Ayshwarya; Smillie, Christopher; Jagadeesh, Karthik A; Duong, Elizabeth Thu; Fiskin, Evgenij; Torlai Triglia, Elena; Ansari, Meshal; Cai, Peiwen; Lin, Brian; Buchanan, Justin; Chen, Sijia; Shu, Jian; Haber, Adam L; Chung, Hattie; Montoro, Daniel T; Adams, Taylor; Aliee, Hananeh; Allon, Samuel J; Andrusivova, Zaneta; Angelidis, Ilias; Ashenberg, Orr; Bassler, Kevin; Bécavin, Christophe; Benhar, Inbal; Bergenstråhle, Joseph; Bergenstråhle, Ludvig; Bolt, Liam; Braun, Emelie; Bui, Linh T; Callori, Steven; Chaffin, Mark; Chichelnitskiy, Evgeny; Chiou, Joshua; Conlon, Thomas M; Cuoco, Michael S; Cuomo, Anna SE; Deprez, Marie; Duclos, Grant; Fine, Denise; Fischer, David S; Ghazanfar, Shila; Gillich, Astrid; Giotti, Bruno; Gould, Joshua; Guo, Minzhe; Gutierrez, Austin J; Habermann, Arun C; Harvey, Tyler; He, Peng; Hou, Xiaomeng; Hu, Lijuan; Hu, Yan; Jaiswal, Alok; Ji, Lu; Jiang, Peiyong; Kapellos, Theodoros S; Kuo, Christin S; Larsson, Ludvig; Leney-Greene, Michael A; Lim, Kyungtae; Litviňuková, Monika; Ludwig, Leif S; Lukassen, Soeren; Luo, Wendy; Maatz, Henrike; Madissoon, Elo; Mamanova, Lira; Manakongtreecheep, Kasidet; Leroy, Sylvie; Mayr, Christoph H; Mbano, Ian M; McAdams, Alexi M; Nabhan, Ahmad N; Nyquist, Sarah K; Penland, Lolita; Poirion, Olivier B; Poli, Sergio; Qi, CanCan; Queen, Rachel; Reichart, Daniel; Rosas, Ivan; Schupp, Jonas C; Shea, Conor V; Shi, Xingyi; Sinha, Rahul; Sit, Rene V; Slowikowski, Kamil; Slyper, Michal; Smith, Neal P; Sountoulidis, Alex; Strunz, Maximilian; Sullivan, Travis B; Sun, Dawei; Talavera-López, Carlos; Tan, Peng; Tantivit, Jessica; Travaglini, Kyle J; Tucker, Nathan R; Vernon, Katherine A; Wadsworth, Marc H; Waldman, Julia; Wang, Xiuting; Xu, Ke; Yan, Wenjun; Zhao, William; Ziegler, Carly GK; NHLBI LungMap Consortium; Human Cell Atlas Lung Biological NetworkAngiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.