Browsing by Author "Kohler, Jennifer J"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway.(Proceedings of the National Academy of Sciences of the United States of America, 2011-02-07) Boyce, Michael; Carrico, Isaac S; Ganguli, Anjali S; Yu, Seok-Ho; Hangauer, Matthew J; Hubbard, Sarah C; Kohler, Jennifer J; Bertozzi, Carolyn RHundreds of mammalian nuclear and cytoplasmic proteins are reversibly glycosylated by O-linked β-N-acetylglucosamine (O-GlcNAc) to regulate their function, localization, and stability. Despite its broad functional significance, the dynamic and posttranslational nature of O-GlcNAc signaling makes it challenging to study using traditional molecular and cell biological techniques alone. Here, we report that metabolic cross-talk between the N-acetylgalactosamine salvage and O-GlcNAcylation pathways can be exploited for the tagging and identification of O-GlcNAcylated proteins. We found that N-azidoacetylgalactosamine (GalNAz) is converted by endogenous mammalian biosynthetic enzymes to UDP-GalNAz and then epimerized to UDP-N-azidoacetylglucosamine (GlcNAz). O-GlcNAc transferase accepts UDP-GlcNAz as a nucleotide-sugar donor, appending an azidosugar onto its native substrates, which can then be detected by covalent labeling using azide-reactive chemical probes. In a proof-of-principle proteomics experiment, we used metabolic GalNAz labeling of human cells and a bioorthogonal chemical probe to affinity-purify and identify numerous O-GlcNAcylated proteins. Our work provides a blueprint for a wide variety of future chemical approaches to identify, visualize, and characterize dynamic O-GlcNAc signaling.Item Open Access Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners.(Proceedings of the National Academy of Sciences of the United States of America, 2012-03-12) Yu, Seok-Ho; Boyce, Michael; Wands, Amberlyn M; Bond, Michelle R; Bertozzi, Carolyn R; Kohler, Jennifer JO-linked β-N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification found on hundreds of nuclear and cytoplasmic proteins in higher eukaryotes. Despite its ubiquity and essentiality in mammals, functional roles for the O-GlcNAc modification remain poorly defined. Here we develop a combined genetic and chemical approach that enables introduction of the diazirine photocrosslinker onto the O-GlcNAc modification in cells. We engineered mammalian cells to produce diazirine-modified O-GlcNAc by expressing a mutant form of UDP-GlcNAc pyrophosphorylase and subsequently culturing these cells with a cell-permeable, diazirine-modified form of GlcNAc-1-phosphate. Irradiation of cells with UV light activated the crosslinker, resulting in formation of covalent bonds between O-GlcNAc-modified proteins and neighboring molecules, which could be identified by mass spectrometry. We used this method to identify interaction partners for the O-GlcNAc-modified FG-repeat nucleoporins. We observed crosslinking between FG-repeat nucleoporins and nuclear transport factors, suggesting that O-GlcNAc residues are intimately associated with essential recognition events in nuclear transport. Further, we propose that the method reported here could find widespread use in investigating the functional consequences of O-GlcNAcylation.Item Open Access Structural basis of O-GlcNAc recognition by mammalian 14-3-3 proteins.(Proceedings of the National Academy of Sciences of the United States of America, 2018-06) Toleman, Clifford A; Schumacher, Maria A; Yu, Seok-Ho; Zeng, Wenjie; Cox, Nathan J; Smith, Timothy J; Soderblom, Erik J; Wands, Amberlyn M; Kohler, Jennifer J; Boyce, MichaelO-GlcNAc is an intracellular posttranslational modification that governs myriad cell biological processes and is dysregulated in human diseases. Despite this broad pathophysiological significance, the biochemical effects of most O-GlcNAcylation events remain uncharacterized. One prevalent hypothesis is that O-GlcNAc moieties may be recognized by "reader" proteins to effect downstream signaling. However, no general O-GlcNAc readers have been identified, leaving a considerable gap in the field. To elucidate O-GlcNAc signaling mechanisms, we devised a biochemical screen for candidate O-GlcNAc reader proteins. We identified several human proteins, including 14-3-3 isoforms, that bind O-GlcNAc directly and selectively. We demonstrate that 14-3-3 proteins bind O-GlcNAc moieties in human cells, and we present the structures of 14-3-3β/α and γ bound to glycopeptides, providing biophysical insights into O-GlcNAc-mediated protein-protein interactions. Because 14-3-3 proteins also bind to phospho-serine and phospho-threonine, they may integrate information from O-GlcNAc and O-phosphate signaling pathways to regulate numerous physiological functions.Item Open Access The human UDP-galactose 4'-epimerase (GALE) is required for cell-surface glycome structure and function.(The Journal of biological chemistry, 2019-12-09) Broussard, Alex; Florwick, Alyssa; Desbiens, Chelsea; Nischan, Nicole; Robertson, Corrina; Guan, Ziqiang; Kohler, Jennifer J; Wells, Lance; Boyce, MichaelGlycan biosynthesis relies on nucleotidesugars (NS), abundant metabolites that serve as monosaccharide donors for glycosyltransferases. In vivo, signal-dependent fluctuations in NS levels are required to maintain normal cell physiology and are dysregulated in disease, but how mammalian cells regulate NS levels and pathway flux remains largely uncharacterized. To address this knowledge gap, we examined uridine diphosphate (UDP)-galactose 4'-epimerase (GALE), which interconverts two pairs of essential NSs. GALE deletion in human cells triggered major imbalances in its substrate NSs and consequent dramatic changes in glycolipids and glycoproteins, including a subset of integrins and the death receptor Fas. NS dysregulation also directly impacted cell signaling, as GALE-/- cells exhibit Fas hypoglycosylation and hypersensitivity to Fas ligand-induced apoptosis. Our results reveal a new role for GALE-mediated NS regulation in supporting death receptor signaling and may have implications for the molecular etiology of illnesses characterized by NS imbalances, including galactosemia and metabolic syndrome.