Browsing by Author "Kornbluth, S"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Cdc25 and Wee1: Analogous opposites?(Cell Division, 2007-05-04) Perry, JA; Kornbluth, SMovement through the cell cycle is controlled by the temporally and spatially ordered activation of cyclin-dependent kinases paired with their respective cyclin binding partners. Cell cycle events occur in a stepwise fashion and are monitored by molecular surveillance systems to ensure that each cell cycle process is appropriately completed before subsequent events are initiated. Cells prevent entry into mitosis while DNA replication is ongoing, or if DNA is damaged, via checkpoint mechanisms that inhibit the activators and activate the inhibitors of mitosis, Cdc25 and Wee1, respectively. Once DNA replication has been faithfully completed, Cdc2/Cyclin B is swiftly activated for a timely transition from interphase into mitosis. This sharp transition is propagated through both positive and negative feedback loops that impinge upon Cdc25 and Wee1 to ensure that Cdc2/Cyclin B is fully activated. Recent reports from a number of laboratories have revealed a remarkably complex network of kinases and phosphatases that coordinately control Cdc25 and Wee1, thereby precisely regulating the transition into mitosis. Although not all factors that inhibit Cdc25 have been shown to activate Wee1 and vice versa, a number of regulatory modules are clearly shared in common. Thus, studies on either the Cdc25 or Wee1-regulatory arm of the mitotic control pathway should continue to shed light on how both arms are coordinated to smoothly regulate mitotic entry. © 2007 Perry and Kornbluth; licensee BioMed Central Ltd.Item Open Access Characterization of the murine BEK fibroblast growth factor (FGF) receptor: activation by three members of the FGF family and requirement for heparin.(Proc Natl Acad Sci U S A, 1992-04-15) Mansukhani, A; Dell'Era, P; Moscatelli, D; Kornbluth, S; Hanafusa, H; Basilico, CThe bek gene encodes a member of the high-affinity fibroblast growth factor receptor family. The BEK/FGFR-2 receptor is a membrane-spanning tyrosine kinase with the typical features of FGF receptors. We have cloned a murine bek cDNA and expressed it in receptor-negative Chinese hamster ovary cells and in 32D myeloid cells. The BEK receptor expressed in Chinese hamster ovary cells binds acidic FGF, basic FGF, and Kaposi FGF equally well but does not bind keratinocyte growth factor or FGF-5 appreciably. Upon treatment with basic FGF or Kaposi FGF, the BEK receptor is phosphorylated and a mitogenic response is achieved. Heparan sulfate proteoglycans have been shown to play an obligate role in basic FGF binding to the high-affinity FLG receptor. Unlike the BEK-expressing Chinese hamster ovary cells, 32D cells expressing the BEK receptor require the addition of exogenous heparin in order to grow in the presence of basic FGF or Kaposi FGF. We show that the addition of heparin greatly enhances the binding of radio-labeled basic FGF to the receptor. Thus the BEK receptor, like FLG, also requires an interaction with heparan sulfate proteoglycans to facilitate binding to its ligands.Item Open Access Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1.(Genes Dev, 1998-07-15) Yang, J; Bardes, ES; Moore, JD; Brennan, J; Powers, MA; Kornbluth, SActivation of the Cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. Cyclin B1 localization changes dramatically during the cell cycle, precipitously transiting from the cytoplasm to the nucleus at the beginning of mitosis. Presumably, this relocalization promotes the phosphorylation of nuclear targets critical for chromatin condensation and nuclear envelope breakdown. We show here that the previously characterized cytoplasmic retention sequence of Cyclin B1, responsible for its interphase cytoplasmic localization, is actually an autonomous nuclear export sequence, capable of directing nuclear export of a heterologous protein, and able to bind specifically to the recently identified export mediator, CRM1. We propose that the observed cytoplasmic localization of Cyclin B1 during interphase reflects the equilibrium between ongoing nuclear import and rapid CRM1-mediated export. In support of this hypothesis, we found that treatment of cells with leptomycin B, which disrupted Cyclin B1-CRM1 interactions, led to a marked nuclear accumulation of Cyclin B1. In mitosis, Cyclin B1 undergoes phosphorylation at several sites, a subset of which have been proposed to play a role in Cyclin B1 accumulation in the nucleus. Both CRM1 binding and the ability to direct nuclear export were affected by mutation of these phosphorylation sites; thus, we propose that Cyclin B1 phosphorylation at the G2/M transition prevents its interaction with CRM1, thereby reducing nuclear export and facilitating nuclear accumulation.Item Open Access Features of programmed cell death in intact Xenopus oocytes and early embryos revealed by near-infrared fluorescence and real-time monitoring.(Cell Death Differ, 2010-01) Johnson, CE; Freel, CD; Kornbluth, SFactors influencing apoptosis of vertebrate eggs and early embryos have been studied in cell-free systems and in intact embryos by analyzing individual apoptotic regulators or caspase activation in static samples. A novel method for monitoring caspase activity in living Xenopus oocytes and early embryos is described here. The approach, using microinjection of a near-infrared caspase substrate that emits fluorescence only after its proteolytic cleavage by active effector caspases, has enabled the elucidation of otherwise cryptic aspects of apoptotic regulation. In particular, we show that brief caspase activity (10 min) is sufficient to cause apoptotic death in this system. We illustrate a cytochrome c dose threshold in the oocyte, which is lowered by Smac, a protein that binds thereby neutralizing the inhibitor of apoptosis proteins. We show that meiotic oocytes develop resistance to cytochrome c, and that the eventual death of oocytes arrested in meiosis is caspase-independent. Finally, data acquired through imaging caspase activity in the Xenopus embryo suggest that apoptosis in very early development is not cell-autonomous. These studies both validate this assay as a useful tool for apoptosis research and reveal subtleties in the cell death program during early development. Moreover, this method offers a potentially valuable screening modality for identifying novel apoptotic regulators.Item Open Access Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death.(Cell Death Differ, 2011-10) Thomenius, M; Freel, CD; Horn, S; Krieser, R; Abdelwahid, E; Cannon, R; Balasundaram, S; White, K; Kornbluth, SIn most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die.Item Open Access Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1.(J Cell Biol, 1999-01-25) Moore, JD; Yang, J; Truant, R; Kornbluth, SReversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence-containing protein, binding to the alpha adaptor subunit of the importin-alpha/beta heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-beta that is distinct from that used to bind importin-alpha.Item Open Access Wee1-regulated apoptosis mediated by the crk adaptor protein in Xenopus egg extracts.(J Cell Biol, 2000-12-25) Smith, JJ; Evans, EK; Murakami, M; Moyer, MB; Moseley, MA; Vande Woude, G; Kornbluth, SMany of the biochemical reactions of apoptotic cell death, including mitochondrial cytochrome c release and caspase activation, can be reconstituted in cell-free extracts derived from Xenopus eggs. In addition, because caspase activation does not occur until the egg extract has been incubated for several hours on the bench, upstream signaling processes occurring before full apoptosis are rendered accessible to biochemical manipulation. We reported previously that the adaptor protein Crk is required for apoptotic signaling in egg extracts (Evans, E.K., W. Lu, S.L. Strum, B.J. Mayer, and S. Kornbluth. 1997. EMBO (Eur. Mol. Biol. Organ.) J. 16:230-241). Moreover, we demonstrated that removal of Crk Src homology (SH)2 or SH3 interactors from the extracts prevented apoptosis. We now report the finding that the relevant Crk SH2-interacting protein, important for apoptotic signaling in the extract, is the well-known cell cycle regulator, Wee1. We have demonstrated a specific interaction between tyrosine-phosphorylated Wee1 and the Crk SH2 domain and have shown that recombinant Wee1 can restore apoptosis to an extract depleted of SH2 interactors. Moreover, exogenous Wee1 accelerated apoptosis in egg extracts, and this acceleration was largely dependent on the presence of endogenous Crk protein. As other Cdk inhibitors, such as roscovitine and Myt1, did not act like Wee1 to accelerate apoptosis, we propose that Wee1-Crk complexes signal in a novel apoptotic pathway, which may be unrelated to Wee1's role as a cell cycle regulator.