Browsing by Author "Kovtun, Mikhail"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Genetics of aging, health, and survival: dynamic regulation of human longevity related traits.(Front Genet, 2015) Yashin, Anatoliy I; Wu, Deqing; Arbeeva, Liubov S; Arbeev, Konstantin G; Kulminski, Alexander M; Akushevich, Igor; Kovtun, Mikhail; Culminskaya, Irina; Stallard, Eric; Li, Miaozhu; Ukraintseva, Svetlana VBACKGROUND: The roles of genetic factors in human longevity would be better understood if one can use more efficient methods in genetic analyses and investigate pleiotropic effects of genetic variants on aging and health related traits. DATA AND METHODS: We used EMMAX software with modified correction for population stratification to perform genome wide association studies (GWAS) of female lifespan from the original FHS cohort. The male data from the original FHS cohort and male and female data combined from the offspring FHS cohort were used to confirm findings. We evaluated pleiotropic effects of selected genetic variants as well as gene-smoking interactions on health and aging related traits. Then we reviewed current knowledge on functional properties of genes related to detected variants. RESULTS: The eight SNPs with genome-wide significant variants were negatively associated with lifespan in both males and females. After additional QC, two of these variants were selected for further analyses of their associations with major diseases (cancer and CHD) and physiological aging changes. Gene-smoking interactions contributed to these effects. Genes closest to detected variants appear to be involved in similar biological processes and health disorders, as those found in other studies of aging and longevity e.g., in cancer and neurodegeneration. CONCLUSIONS: The impact of genes on longevity may involve trade-off-like effects on different health traits. Genes that influence lifespan represent various molecular functions but may be involved in similar biological processes and health disorders, which could contribute to genetic heterogeneity of longevity and the lack of replication in genetic association studies.Item Open Access Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis.(Plant Physiol, 2011-11) Cui, Hongchang; Hao, Yueling; Kovtun, Mikhail; Stolc, Viktor; Deng, Xing-Wang; Sakakibara, Hitoshi; Kojima, MikikoSHORT-ROOT (SHR) is a key regulator of root growth and development in Arabidopsis (Arabidopsis thaliana). Made in the stele, the SHR protein moves into an adjacent cell layer, where it specifies endodermal cell fate; it is also essential for apical meristem maintenance, ground tissue patterning, vascular differentiation, and lateral root formation. Much has been learned about the mechanism by which SHR controls radial patterning, but how it regulates other aspects of root morphogenesis is still unclear. To dissect the SHR developmental pathway, we have determined the genome-wide locations of SHR direct targets using a chromatin immunoprecipitation followed by microarray analysis method. K-means clustering analysis not only identified additional quiescent center-specific SHR targets but also revealed a direct role for SHR in gene regulation in the pericycle and xylem. Using cell type-specific markers, we showed that in shr, the phloem and the phloem-associated pericycle expanded, whereas the xylem and xylem-associated pericycle diminished. Interestingly, we found that cytokinin level was elevated in shr and that exogenous cytokinin conferred a shr-like vascular patterning phenotype in wild-type root. By chromatin immunoprecipitation-polymerase chain reaction and reverse transcription-polymerase chain reaction assays, we showed that SHR regulates cytokinin homeostasis by directly controlling the transcription of cytokinin oxidase 3, a cytokinin catabolism enzyme preferentially expressed in the stele. Finally, overexpression of a cytokinin oxidase in shr alleviated its vascular patterning defect. On the basis of these results, we suggest that one mechanism by which SHR controls vascular patterning is the regulation of cytokinin homeostasis.Item Open Access How the effects of aging and stresses of life are integrated in mortality rates: insights for genetic studies of human health and longevity.(Biogerontology, 2016-02) Yashin, Anatoliy I; Arbeev, Konstantin G; Arbeeva, Liubov S; Wu, Deqing; Akushevich, Igor; Kovtun, Mikhail; Yashkin, Arseniy; Kulminski, Alexander; Culminskaya, Irina; Stallard, Eric; Li, Miaozhu; Ukraintseva, Svetlana VIncreasing proportions of elderly individuals in developed countries combined with substantial increases in related medical expenditures make the improvement of the health of the elderly a high priority today. If the process of aging by individuals is a major cause of age related health declines then postponing aging could be an efficient strategy for improving the health of the elderly. Implementing this strategy requires a better understanding of genetic and non-genetic connections among aging, health, and longevity. We review progress and problems in research areas whose development may contribute to analyses of such connections. These include genetic studies of human aging and longevity, the heterogeneity of populations with respect to their susceptibility to disease and death, forces that shape age patterns of human mortality, secular trends in mortality decline, and integrative mortality modeling using longitudinal data. The dynamic involvement of genetic factors in (i) morbidity/mortality risks, (ii) responses to stresses of life, (iii) multi-morbidities of many elderly individuals, (iv) trade-offs for diseases, (v) genetic heterogeneity, and (vi) other relevant aging-related health declines, underscores the need for a comprehensive, integrated approach to analyze the genetic connections for all of the above aspects of aging-related changes. The dynamic relationships among aging, health, and longevity traits would be better understood if one linked several research fields within one conceptual framework that allowed for efficient analyses of available longitudinal data using the wealth of available knowledge about aging, health, and longevity already accumulated in the research field.Item Open Access ON IDENTIFIABILITY OF MIXTURES OF INDEPENDENT DISTRIBUTION LAWS(, .)(ESAIM Probab Stat, 2014-01) Kovtun, Mikhail; Akushevich, Igor; Yashin, AnatoliyWe consider representations of a joint distribution law of a family of categorical random variables (i.e., a multivariate categorical variable) as a mixture of independent distribution laws (i.e. distribution laws according to which random variables are mutually independent). For infinite families of random variables, we describe a class of mixtures with identifiable mixing measure. This class is interesting from a practical point of view as well, as its structure clarifies principles of selecting a "good" finite family of random variables to be used in applied research. For finite families of random variables, the mixing measure is never identifiable; however, it always possesses a number of identifiable invariants, which provide substantial information regarding the distribution under consideration.Item Open Access Pleiotropic Meta-Analyses of Longitudinal Studies Discover Novel Genetic Variants Associated with Age-Related Diseases.(Front Genet, 2016) He, Liang; Kernogitski, Yelena; Kulminskaya, Irina; Loika, Yury; Arbeev, Konstantin G; Loiko, Elena; Bagley, Olivia; Duan, Matt; Yashkin, Arseniy; Ukraintseva, Svetlana V; Kovtun, Mikhail; Yashin, Anatoliy I; Kulminski, Alexander MAge-related diseases may result from shared biological mechanisms in intrinsic processes of aging. Genetic effects on age-related diseases are often modulated by environmental factors due to their little contribution to fitness or are mediated through certain endophenotypes. Identification of genetic variants with pleiotropic effects on both common complex diseases and endophenotypes may reveal potential conflicting evolutionary pressures and deliver new insights into shared genetic contribution to healthspan and lifespan. Here, we performed pleiotropic meta-analyses of genetic variants using five NIH-funded datasets by integrating univariate summary statistics for age-related diseases and endophenotypes. We investigated three groups of traits: (1) endophenotypes such as blood glucose, blood pressure, lipids, hematocrit, and body mass index, (2) time-to-event outcomes such as the age-at-onset of diabetes mellitus (DM), cancer, cardiovascular diseases (CVDs) and neurodegenerative diseases (NDs), and (3) both combined. In addition to replicating previous findings, we identify seven novel genome-wide significant loci (< 5e-08), out of which five are low-frequency variants. Specifically, from Group 2, we find rs7632505 on 3q21.1 in SEMA5B, rs460976 on 21q22.3 (1 kb from TMPRSS2) and rs12420422 on 11q24.1 predominantly associated with a variety of CVDs, rs4905014 in ITPK1 associated with stroke and heart failure, rs7081476 on 10p12.1 in ANKRD26 associated with multiple diseases including DM, CVDs, and NDs. From Group 3, we find rs8082812 on 18p11.22 and rs1869717 on 4q31.3 associated with both endophenotypes and CVDs. Our follow-up analyses show that rs7632505, rs4905014, and rs8082812 have age-dependent effects on coronary heart disease or stroke. Functional annotation suggests that most of these SNPs are within regulatory regions or DNase clusters and in linkage disequilibrium with expression quantitative trait loci, implying their potential regulatory influence on the expression of nearby genes. Our mediation analyses suggest that the effects of some SNPs are mediated by specific endophenotypes. In conclusion, these findings indicate that loci with pleiotropic effects on age-related disorders tend to be enriched in genes involved in underlying mechanisms potentially related to nervous, cardiovascular and immune system functions, stress resistance, inflammation, ion channels and hematopoiesis, supporting the hypothesis of shared pathological role of infection, and inflammation in chronic age-related diseases.Item Open Access Pure and Confounded Effects of Causal SNPs on Longevity: Insights for Proper Interpretation of Research Findings in GWAS of Populations with Different Genetic Structures.(Front Genet, 2016) Yashin, Anatoliy I; Zhbannikov, Ilya; Arbeeva, Liubov; Arbeev, Konstantin G; Wu, Deqing; Akushevich, Igor; Yashkin, Arseniy; Kovtun, Mikhail; Kulminski, Alexander M; Stallard, Eric; Kulminskaya, Irina; Ukraintseva, SvetlanaThis paper shows that the effects of causal SNPs on lifespan, estimated through GWAS, may be confounded and the genetic structure of the study population may be responsible for this effect. Simulation experiments show that levels of linkage disequilibrium (LD) and other parameters of the population structure describing connections between two causal SNPs may substantially influence separate estimates of the effect of the causal SNPs on lifespan. This study suggests that differences in LD levels between two causal SNP loci within two study populations may contribute to the failure to replicate previous GWAS findings. The results of this paper also show that successful replication of the results of genetic association studies does not necessarily guarantee proper interpretation of the effect of a causal SNP on lifespan.