Browsing by Author "Kozink, Daniel M"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination.(PloS one, 2011-01) Moody, M Anthony; Zhang, Ruijun; Walter, Emmanuel B; Woods, Christopher W; Ginsburg, Geoffrey S; McClain, Micah T; Denny, Thomas N; Chen, Xi; Munshaw, Supriya; Marshall, Dawn J; Whitesides, John F; Drinker, Mark S; Amos, Joshua D; Gurley, Thaddeus C; Eudailey, Joshua A; Foulger, Andrew; DeRosa, Katherine R; Parks, Robert; Meyerhoff, R Ryan; Yu, Jae-Sung; Kozink, Daniel M; Barefoot, Brice E; Ramsburg, Elizabeth A; Khurana, Surender; Golding, Hana; Vandergrift, Nathan A; Alam, S Munir; Tomaras, Georgia D; Kepler, Thomas B; Kelsoe, Garnett; Liao, Hua-Xin; Haynes, Barton FDuring the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection.To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject.The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.Item Open Access IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria.(PLoS One, 2014) Hwang, Kwan-Ki; Trama, Ashley M; Kozink, Daniel M; Chen, Xi; Wiehe, Kevin; Cooper, Abby J; Xia, Shi-Mao; Wang, Minyue; Marshall, Dawn J; Whitesides, John; Alam, Munir; Tomaras, Georgia D; Allen, Steven L; Rai, Kanti R; McKeating, Jane; Catera, Rosa; Yan, Xiao-Jie; Chu, Charles C; Kelsoe, Garnett; Liao, Hua-Xin; Chiorazzi, Nicholas; Haynes, Barton FB-cell chronic lymphocytic leukemia (B-CLL) patients expressing unmutated immunoglobulin heavy variable regions (IGHVs) use the IGHV1-69 B cell receptor (BCR) in 25% of cases. Since HIV-1 envelope gp41 antibodies also frequently use IGHV1-69 gene segments, we hypothesized that IGHV1-69 B-CLL precursors may contribute to the gp41 B cell response during HIV-1 infection. To test this hypothesis, we rescued 5 IGHV1-69 unmutated antibodies as heterohybridoma IgM paraproteins and as recombinant IgG1 antibodies from B-CLL patients, determined their antigenic specificities and analyzed BCR sequences. IGHV1-69 B-CLL antibodies were enriched for reactivity with HIV-1 envelope gp41, influenza, hepatitis C virus E2 protein and intestinal commensal bacteria. These IGHV1-69 B-CLL antibodies preferentially used IGHD3 and IGHJ6 gene segments and had long heavy chain complementary determining region 3s (HCDR3s) (≥21 aa). IGHV1-69 B-CLL BCRs exhibited a phenylalanine at position 54 (F54) of the HCDR2 as do rare HIV-1 gp41 and influenza hemagglutinin stem neutralizing antibodies, while IGHV1-69 gp41 antibodies induced by HIV-1 infection predominantly used leucine (L54) allelic variants. These results demonstrate that the B-CLL cell population is an expansion of members of the innate polyreactive B cell repertoire with reactivity to a number of infectious agent antigens including intestinal commensal bacteria. The B-CLL IGHV1-69 B cell usage of F54 allelic variants strongly suggests that IGHV1-69 B-CLL gp41 antibodies derive from a restricted B cell pool that also produces rare HIV-1 gp41 and influenza hemagglutinin stem antibodies.Item Open Access Two distinct broadly neutralizing antibody specificities of different clonal lineages in a single HIV-1-infected donor: implications for vaccine design.(J Virol, 2012-04) Bonsignori, Mattia; Montefiori, David C; Wu, Xueling; Chen, Xi; Hwang, Kwan-Ki; Tsao, Chun-Yen; Kozink, Daniel M; Parks, Robert J; Tomaras, Georgia D; Crump, John A; Kapiga, Saidi H; Sam, Noel E; Kwong, Peter D; Kepler, Thomas B; Liao, Hua-Xin; Mascola, John R; Haynes, Barton FPlasma from a small subset of subjects chronically infected with HIV-1 shows remarkable magnitude and breadth of neutralizing activity. From one of these individuals (CH0219), we isolated two broadly neutralizing antibodies (bnAbs), CH01 and VRC-CH31, from two clonal lineages of memory B cells with distinct specificities (variable loop 1 and 2 [V1V2] conformational specificity and CD4-binding site specificity, respectively) that recapitulate 95% of CH0219 serum neutralization breadth. These data provide proof of concept for an HIV-1 vaccine that aims to elicit bnAbs of multiple specificities.