Browsing by Author "Lane, H Clifford"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Developing Treatment Guidelines During a Pandemic Health Crisis: Lessons Learned From COVID-19.(Annals of internal medicine, 2021-08) Kuriakose, Safia; Singh, Kanal; Pau, Alice K; Daar, Eric; Gandhi, Rajesh; Tebas, Pablo; Evans, Laura; Gulick, Roy M; Lane, H Clifford; Masur, Henry; NIH COVID-19 Treatment Guidelines Panel; Aberg, Judith A; Adimora, Adaora A; Baker, Jason; Kreuziger, Lisa Baumann; Bedimo, Roger; Belperio, Pamela S; Cantrill, Stephen V; Coopersmith, Craig M; Davis, Susan L; Dzierba, Amy L; Gallagher, John J; Glidden, David V; Grund, Birgit; Hardy, Erica J; Hinkson, Carl; Hughes, Brenna L; Johnson, Steven; Keller, Marla J; Kim, Arthur Y; Lennox, Jeffrey L; Levy, Mitchell M; Li, Jonathan Z; Martin, Greg S; Naggie, Susanna; Pavia, Andrew T; Seam, Nitin; Simpson, Steven Q; Swindells, Susan; Tien, Phyllis; Waghmare, Alpana A; Wilson, Kevin C; Yazdany, Jinoos; Zachariah, Philip; Campbell, Danielle M; Harrison, Carly; Burgess, Timothy; Francis, Joseph; Sheikh, Virginia; Uyeki, Timothy M; Walker, Robert; Brooks, John T; Ortiz, Laura Bosque; Davey, Richard T; Doepel, Laurie K; Eisinger, Robert W; Han, Alison; Higgs, Elizabeth S; Nason, Martha C; Crew, Page; Lerner, Andrea M; Lund, Claire; Worthington, ChristopherThe development of the National Institutes of Health (NIH) COVID-19 Treatment Guidelines began in March 2020 in response to a request from the White House Coronavirus Task Force. Within 4 days of the request, the NIH COVID-19 Treatment Guidelines Panel was established and the first meeting took place (virtually-as did subsequent meetings). The Panel comprises 57 individuals representing 6 governmental agencies, 11 professional societies, and 33 medical centers, plus 2 community members, who have worked together to create and frequently update the guidelines on the basis of evidence from the most recent clinical studies available. The initial version of the guidelines was completed within 2 weeks and posted online on 21 April 2020. Initially, sparse evidence was available to guide COVID-19 treatment recommendations. However, treatment data rapidly accrued based on results from clinical studies that used various study designs and evaluated different therapeutic agents and approaches. Data have continued to evolve at a rapid pace, leading to 24 revisions and updates of the guidelines in the first year. This process has provided important lessons for responding to an unprecedented public health emergency: Providers and stakeholders are eager to access credible, current treatment guidelines; governmental agencies, professional societies, and health care leaders can work together effectively and expeditiously; panelists from various disciplines, including biostatistics, are important for quickly developing well-informed recommendations; well-powered randomized clinical trials continue to provide the most compelling evidence to guide treatment recommendations; treatment recommendations need to be developed in a confidential setting free from external pressures; development of a user-friendly, web-based format for communicating with health care providers requires substantial administrative support; and frequent updates are necessary as clinical evidence rapidly emerges.Item Open Access Polyclonal B cell differentiation and loss of gastrointestinal tract germinal centers in the earliest stages of HIV-1 infection.(PLoS Med, 2009-07-07) Levesque, Marc C; Moody, M Anthony; Hwang, Kwan-Ki; Marshall, Dawn J; Whitesides, John F; Amos, Joshua D; Gurley, Thaddeus C; Allgood, Sallie; Haynes, Benjamin B; Vandergrift, Nathan A; Plonk, Steven; Parker, Daniel C; Cohen, Myron S; Tomaras, Georgia D; Goepfert, Paul A; Shaw, George M; Schmitz, Jörn E; Eron, Joseph J; Shaheen, Nicholas J; Hicks, Charles B; Liao, Hua-Xin; Markowitz, Martin; Kelsoe, Garnett; Margolis, David M; Haynes, Barton FBACKGROUND: The antibody response to HIV-1 does not appear in the plasma until approximately 2-5 weeks after transmission, and neutralizing antibodies to autologous HIV-1 generally do not become detectable until 12 weeks or more after transmission. Moreover, levels of HIV-1-specific antibodies decline on antiretroviral treatment. The mechanisms of this delay in the appearance of anti-HIV-1 antibodies and of their subsequent rapid decline are not known. While the effect of HIV-1 on depletion of gut CD4(+) T cells in acute HIV-1 infection is well described, we studied blood and tissue B cells soon after infection to determine the effect of early HIV-1 on these cells. METHODS AND FINDINGS: In human participants, we analyzed B cells in blood as early as 17 days after HIV-1 infection, and in terminal ileum inductive and effector microenvironments beginning at 47 days after infection. We found that HIV-1 infection rapidly induced polyclonal activation and terminal differentiation of B cells in blood and in gut-associated lymphoid tissue (GALT) B cells. The specificities of antibodies produced by GALT memory B cells in acute HIV-1 infection (AHI) included not only HIV-1-specific antibodies, but also influenza-specific and autoreactive antibodies, indicating very early onset of HIV-1-induced polyclonal B cell activation. Follicular damage or germinal center loss in terminal ileum Peyer's patches was seen with 88% of follicles exhibiting B or T cell apoptosis and follicular lysis. CONCLUSIONS: Early induction of polyclonal B cell differentiation, coupled with follicular damage and germinal center loss soon after HIV-1 infection, may explain both the high rate of decline in HIV-1-induced antibody responses and the delay in plasma antibody responses to HIV-1. Please see later in the article for Editors' Summary.