Browsing by Author "Lapp, Hilmar"
Now showing 1 - 20 of 35
- Results Per Page
- Sort Options
Item Open Access 500,000 fish phenotypes: The new informatics landscape for evolutionary and developmental biology of the vertebrate skeleton.(J Appl Ichthyol, 2012-06-01) Mabee, By Paula; Balhoff, James P; Dahdul, Wasila M; Lapp, Hilmar; Midford, Peter E; Vision, Todd J; Westerfield, MonteThe rich phenotypic diversity that characterizes the vertebrate skeleton results from evolutionary changes in regulation of genes that drive development. Although relatively little is known about the genes that underlie the skeletal variation among fish species, significant knowledge of genetics and development is available for zebrafish. Because developmental processes are highly conserved, this knowledge can be leveraged for understanding the evolution of skeletal diversity. We developed the Phenoscape Knowledgebase (KB; http://kb.phenoscape.org) to yield testable hypotheses of candidate genes involved in skeletal evolution. We developed a community anatomy ontology for fishes and ontology-based methods to represent complex free-text character descriptions of species in a computable format. With these tools, we populated the KB with comparative morphological data from the literature on over 2,500 teleost fishes (mainly Ostariophysi) resulting in over 500,000 taxon phenotype annotations. The KB integrates these data with similarly structured phenotype data from zebrafish genes (http://zfin.org). Using ontology-based reasoning, candidate genes can be inferred for the phenotypes that vary across taxa, thereby uniting genetic and phenotypic data to formulate evo-devo hypotheses. The morphological data in the KB can be browsed, sorted, and aggregated in ways that provide unprecedented possibilities for data mining and discovery.Item Open Access A Logical Model of Homology for Comparative Biology.(Systematic biology, 2020-03) Mabee, Paula M; Balhoff, James P; Dahdul, Wasila M; Lapp, Hilmar; Mungall, Christopher J; Vision, Todd JThere is a growing body of research on the evolution of anatomy in a wide variety of organisms. Discoveries in this field could be greatly accelerated by computational methods and resources that enable these findings to be compared across different studies and different organisms and linked with the genes responsible for anatomical modifications. Homology is a key concept in comparative anatomy; two important types are historical homology (the similarity of organisms due to common ancestry) and serial homology (the similarity of repeated structures within an organism). We explored how to most effectively represent historical and serial homology across anatomical structures to facilitate computational reasoning. We assembled a collection of homology assertions from the literature with a set of taxon phenotypes for the skeletal elements of vertebrate fins and limbs from the Phenoscape Knowledgebase. Using seven competency questions, we evaluated the reasoning ramifications of two logical models: the Reciprocal Existential Axioms (REA) homology model and the Ancestral Value Axioms (AVA) homology model. The AVA model returned all user-expected results in addition to the search term and any of its subclasses. The AVA model also returns any superclass of the query term in which a homology relationship has been asserted. The REA model returned the user-expected results for five out of seven queries. We identify some challenges of implementing complete homology queries due to limitations of OWL reasoning. This work lays the foundation for homology reasoning to be incorporated into other ontology-based tools, such as those that enable synthetic supermatrix construction and candidate gene discovery. [Homology; ontology; anatomy; morphology; evolution; knowledgebase; phenoscape.].Item Open Access A new phylogenetic data standard for computable clade definitions: the Phyloreference Exchange Format (Phyx).(PeerJ, 2022-01) Vaidya, Gaurav; Cellinese, Nico; Lapp, HilmarTo be computationally reproducible and efficient, integration of disparate data depends on shared entities whose matching meaning (semantics) can be computationally assessed. For biodiversity data one of the most prevalent shared entities for linking data records is the associated taxon concept. Unlike Linnaean taxon names, the traditional way in which taxon concepts are provided, phylogenetic definitions are native to phylogenetic trees and offer well-defined semantics that can be transformed into formal, computationally evaluable logic expressions. These attributes make them highly suitable for phylogeny-driven comparative biology by allowing computationally verifiable and reproducible integration of taxon-linked data against Tree of Life-scale phylogenies. To achieve this, the first step is transforming phylogenetic definitions from the natural language text in which they are published to a structured interoperable data format that maintains strong ties to semantics and lends itself well to sharing, reuse, and long-term archival. To this end, we developed the Phyloreference Exchange Format (Phyx), a JSON-LD-based text format encompassing rich metadata for all elements of a phylogenetic definition, and we created a supporting software library, phyx.js, to streamline computational management of such files. Together they form a foundation layer for digitizing and computing with phylogenetic definitions of clades.Item Open Access A unified anatomy ontology of the vertebrate skeletal system.(PLoS One, 2012) Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula MThe skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.Item Open Access Annotation of phenotypes using ontologies: a gold standard for the training and evaluation of natural language processing systems.(Database : the journal of biological databases and curation, 2018-01) Dahdul, Wasila; Manda, Prashanti; Cui, Hong; Balhoff, James P; Dececchi, T Alexander; Ibrahim, Nizar; Lapp, Hilmar; Vision, Todd; Mabee, Paula MNatural language descriptions of organismal phenotypes, a principal object of study in biology, are abundant in the biological literature. Expressing these phenotypes as logical statements using ontologies would enable large-scale analysis on phenotypic information from diverse systems. However, considerable human effort is required to make these phenotype descriptions amenable to machine reasoning. Natural language processing tools have been developed to facilitate this task, and the training and evaluation of these tools depend on the availability of high quality, manually annotated gold standard data sets. We describe the development of an expert-curated gold standard data set of annotated phenotypes for evolutionary biology. The gold standard was developed for the curation of complex comparative phenotypes for the Phenoscape project. It was created by consensus among three curators and consists of entity-quality expressions of varying complexity. We use the gold standard to evaluate annotations created by human curators and those generated by the Semantic CharaParser tool. Using four annotation accuracy metrics that can account for any level of relationship between terms from two phenotype annotations, we found that machine-human consistency, or similarity, was significantly lower than inter-curator (human-human) consistency. Surprisingly, allowing curatorsaccess to external information did not significantly increase the similarity of their annotations to the gold standard or have a significant effect on inter-curator consistency. We found that the similarity of machine annotations to the gold standard increased after new relevant ontology terms had been added. Evaluation by the original authors of the character descriptions indicated that the gold standard annotations came closer to representing their intended meaning than did either the curator or machine annotations. These findings point toward ways to better design software to augment human curators and the use of the gold standard corpus will allow training and assessment of new tools to improve phenotype annotation accuracy at scale.Item Open Access Annotation of phenotypic diversity: decoupling data curation and ontology curation using Phenex.(Journal of biomedical semantics, 2014-01) Balhoff, James P; Dahdul, Wasila M; Dececchi, T Alexander; Lapp, Hilmar; Mabee, Paula M; Vision, Todd JBackground
Phenex (http://phenex.phenoscape.org/) is a desktop application for semantically annotating the phenotypic character matrix datasets common in evolutionary biology. Since its initial publication, we have added new features that address several major bottlenecks in the efficiency of the phenotype curation process: allowing curators during the data curation phase to provisionally request terms that are not yet available from a relevant ontology; supporting quality control against annotation guidelines to reduce later manual review and revision; and enabling the sharing of files for collaboration among curators.Results
We decoupled data annotation from ontology development by creating an Ontology Request Broker (ORB) within Phenex. Curators can use the ORB to request a provisional term for use in data annotation; the provisional term can be automatically replaced with a permanent identifier once the term is added to an ontology. We added a set of annotation consistency checks to prevent common curation errors, reducing the need for later correction. We facilitated collaborative editing by improving the reliability of Phenex when used with online folder sharing services, via file change monitoring and continual autosave.Conclusions
With the addition of these new features, and in particular the Ontology Request Broker, Phenex users have been able to focus more effectively on data annotation. Phenoscape curators using Phenex have reported a smoother annotation workflow, with much reduced interruptions from ontology maintenance and file management issues.Item Open Access apex: phylogenetics with multiple genes.(Mol Ecol Resour, 2017-01) Jombart, Thibaut; Archer, Frederick; Schliep, Klaus; Kamvar, Zhian; Harris, Rebecca; Paradis, Emmanuel; Goudet, Jérome; Lapp, HilmarGenetic sequences of multiple genes are becoming increasingly common for a wide range of organisms including viruses, bacteria and eukaryotes. While such data may sometimes be treated as a single locus, in practice, a number of biological and statistical phenomena can lead to phylogenetic incongruence. In such cases, different loci should, at least as a preliminary step, be examined and analysed separately. The r software has become a popular platform for phylogenetics, with several packages implementing distance-based, parsimony and likelihood-based phylogenetic reconstruction, and an even greater number of packages implementing phylogenetic comparative methods. Unfortunately, basic data structures and tools for analysing multiple genes have so far been lacking, thereby limiting potential for investigating phylogenetic incongruence. In this study, we introduce the new r package apex to fill this gap. apex implements new object classes, which extend existing standards for storing DNA and amino acid sequences, and provides a number of convenient tools for handling, visualizing and analysing these data. In this study, we introduce the main features of the package and illustrate its functionalities through the analysis of a simple data set.Item Open Access Application programming interfaces for knowledge transfer and generation in the life sciences and healthcare.(NPJ digital medicine, 2020-01) Woody, Stephen K; Burdick, David; Lapp, Hilmar; Huang, Erich SStoring very large amounts of data and delivering them to researchers in an efficient, verifiable, and compliant manner, is one of the major challenges faced by health care providers and researchers in the life sciences. The electronic health record (EHR) at a hospital or clinic currently functions as a silo, and although EHRs contain rich and abundant information that could be used to understand, improve, and learn from care as part learning health system access to these data is difficult, and the technical, legal, ethical, and social barriers are significant. If we create a microservice ecosystem where data can be accessed through APIs, these challenges become easier to overcome: a service-driven design decouples data from clients. This decoupling provides flexibility: different users can write in their preferred language and use different clients depending on their needs. APIs can be written for iOS apps, web apps, or an R library, and this flexibility highlights the potential ecosystem-building power of APIs. In this article, we use two case studies to illustrate what it means to participate in and contribute to interconnected ecosystems that powers APIs in a healthcare systems.Item Open Access Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge From Anatomy Ontologies.(Systematic biology, 2022-10) Porto, Diego S; Dahdul, Wasila M; Lapp, Hilmar; Balhoff, James P; Vision, Todd J; Mabee, Paula M; Uyeda, JosefMorphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent "parts", but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies-structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies. Here, we assess whether evolutionary patterns can explain the proximity of ontology-annotated characters within an ontology. To do so, we measure phylogenetic information across characters and evaluate if it matches the hierarchical structure given by ontological knowledge-in much the same way as across-species diversity structure is given by phylogeny. We implement an approach to evaluate the Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among ontology-annotated anatomical data subsets. We applied this to data sets representing two disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we find that BPI is not substantially explained by anatomy since dissonance is often high among morphologically related anatomical entities. For fishes, we find substantial information for two clusters of anatomical entities instantiating concepts from the jaws and branchial arch bones, but among-subset information decreases and dissonance increases substantially moving to higher-level subsets in the ontology. We further applied our approach to address particular evolutionary hypotheses with an example of morphological evolution in miniature fishes. While we show that phylogenetic information does match ontology structure for some anatomical entities, additional relationships and processes, such as convergence, likely play a substantial role in explaining BPI and dissonance, and merit future investigation. Our work demonstrates how complex morphological data sets can be interrogated with ontologies by allowing one to access how information is spread hierarchically across anatomical concepts, how congruent this information is, and what sorts of processes may play a role in explaining it: phylogeny, development, or convergence. [Apidae; Bayesian phylogenetic information; Ostariophysi; Phenoscape; phylogenetic dissonance; semantic similarity.].Item Open Access BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains.(J Biomed Semantics, 2014-02-05) Katayama, Toshiaki; Wilkinson, Mark D; Aoki-Kinoshita, Kiyoko F; Kawashima, Shuichi; Yamamoto, Yasunori; Yamaguchi, Atsuko; Okamoto, Shinobu; Kawano, Shin; Kim, Jin-Dong; Wang, Yue; Wu, Hongyan; Kano, Yoshinobu; Ono, Hiromasa; Bono, Hidemasa; Kocbek, Simon; Aerts, Jan; Akune, Yukie; Antezana, Erick; Arakawa, Kazuharu; Aranda, Bruno; Baran, Joachim; Bolleman, Jerven; Bonnal, Raoul Jp; Buttigieg, Pier Luigi; Campbell, Matthew P; Chen, Yi-An; Chiba, Hirokazu; Cock, Peter Ja; Cohen, K Bretonnel; Constantin, Alexandru; Duck, Geraint; Dumontier, Michel; Fujisawa, Takatomo; Fujiwara, Toyofumi; Goto, Naohisa; Hoehndorf, Robert; Igarashi, Yoshinobu; Itaya, Hidetoshi; Ito, Maori; Iwasaki, Wataru; Kalaš, Matúš; Katoda, Takeo; Kim, Taehong; Kokubu, Anna; Komiyama, Yusuke; Kotera, Masaaki; Laibe, Camille; Lapp, Hilmar; Lütteke, Thomas; Marshall, M Scott; Mori, Takaaki; Mori, Hiroshi; Morita, Mizuki; Murakami, Katsuhiko; Nakao, Mitsuteru; Narimatsu, Hisashi; Nishide, Hiroyo; Nishimura, Yosuke; Nystrom-Persson, Johan; Ogishima, Soichi; Okamura, Yasunobu; Okuda, Shujiro; Oshita, Kazuki; Packer, Nicki H; Prins, Pjotr; Ranzinger, Rene; Rocca-Serra, Philippe; Sansone, Susanna; Sawaki, Hiromichi; Shin, Sung-Ho; Splendiani, Andrea; Strozzi, Francesco; Tadaka, Shu; Toukach, Philip; Uchiyama, Ikuo; Umezaki, Masahito; Vos, Rutger; Whetzel, Patricia L; Yamada, Issaku; Yamasaki, Chisato; Yamashita, Riu; York, William S; Zmasek, Christian M; Kawamoto, Shoko; Takagi, ToshihisaThe application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed.Item Open Access Erratum: Publisher Correction: Application programming interfaces for knowledge transfer and generation in the life sciences and healthcare.(NPJ digital medicine, 2020-01) Woody, Stephen K; Burdick, David; Lapp, Hilmar; Huang, Erich S[This corrects the article DOI: 10.1038/s41746-020-0235-5.].Item Open Access Evolutionary characters, phenotypes and ontologies: curating data from the systematic biology literature.(PLoS One, 2010-05-20) Dahdul, Wasila M; Balhoff, James P; Engeman, Jeffrey; Grande, Terry; Hilton, Eric J; Kothari, Cartik; Lapp, Hilmar; Lundberg, John G; Midford, Peter E; Vision, Todd J; Westerfield, Monte; Mabee, Paula MBACKGROUND: The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. METHODOLOGY/PRINCIPAL FINDINGS: We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. CONCLUSIONS/SIGNIFICANCE: The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of the detailed variations in phenotype, whether between mutant or wildtype, among individual humans, or across the diversity of species, requires a process by which a precise combination of terms from domain ontologies are selected and organized according to logical relations. The efficiencies that we have developed in this process will be useful for any attempt to annotate complex phenotypic descriptions using ontologies. We also discuss some ramifications of EQ representation for the domain of systematics.Item Open Access Finding our way through phenotypes.(PLoS Biol, 2015-01) Deans, Andrew R; Lewis, Suzanna E; Huala, Eva; Anzaldo, Salvatore S; Ashburner, Michael; Balhoff, James P; Blackburn, David C; Blake, Judith A; Burleigh, J Gordon; Chanet, Bruno; Cooper, Laurel D; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E; Dumontier, Michel; Franz, Nico M; Friedrich, Frank; Gkoutos, George V; Haendel, Melissa; Harmon, Luke J; Hayamizu, Terry F; He, Yongqun; Hines, Heather M; Ibrahim, Nizar; Jackson, Laura M; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J; Le Novère, Nicolas; Lundberg, John G; Macklin, James; Mast, Austin R; Midford, Peter E; Mikó, István; Mungall, Christopher J; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J; Richter, Stefan; Robinson, Peter N; Ruttenberg, Alan; Schulz, Katja S; Segerdell, Erik; Seltmann, Katja C; Sharkey, Michael J; Smith, Aaron D; Smith, Barry; Specht, Chelsea D; Squires, R Burke; Thacker, Robert W; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D; Vogt, Lars; Wall, Christine E; Walls, Ramona L; Westerfeld, Monte; Wharton, Robert A; Wirkner, Christian S; Woolley, James B; Yoder, Matthew J; Zorn, Aaron M; Mabee, PaulaDespite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.Item Open Access Meeting Report: BioSharing at ISMB 2010.(Standards in genomic sciences, 2010-12) Field, Dawn; Sansone, Susanna; Delong, Edward F; Sterk, Peter; Friedberg, Iddo; Gaudet, Pascale; Lewis, Susanna; Kottmann, Renzo; Hirschman, Lynette; Garrity, George; Cochrane, Guy; Wooley, John; Meyer, Folker; Hunter, Sarah; White, Owen; Bramlett, Brian; Gregurick, Susan; Lapp, Hilmar; Orchard, Sandra; Rocca-Serra, Philippe; Ruttenberg, Alan; Shah, Nigam; Taylor, Chris; Thessen, AnneThis report summarizes the proceedings of the one day BioSharing meeting held at the Intelligent Systems for Molecular Biology (ISMB) 2010 conference in Boston, MA, USA This inaugural BioSharing event was hosted by the Genomic Standards Consortium as part of its M3 & BioSharing special interest group (SIG) workshop. The BioSharing event included invited talks from a range of community leaders and a panel discussion at the end of the day. The panel session led to the formal agreement among community leaders to join together to promote cross-community knowledge exchange and collaborations. A key focus of the newly formed Biosharing community will be linking up resources to promote real-world data sharing (virtuous cycle of data) and supporting compliance with data policies through the creation of a one-stop-portal of information. Further information about the newly established BioSharing effort can be found at http://biosharing.org.Item Open Access Moving the mountain: analysis of the effort required to transform comparative anatomy into computable anatomy.(Database : the journal of biological databases and curation, 2015-01) Dahdul, Wasila; Dececchi, T Alexander; Ibrahim, Nizar; Lapp, Hilmar; Mabee, PaulaThe diverse phenotypes of living organisms have been described for centuries, and though they may be digitized, they are not readily available in a computable form. Using over 100 morphological studies, the Phenoscape project has demonstrated that by annotating characters with community ontology terms, links between novel species anatomy and the genes that may underlie them can be made. But given the enormity of the legacy literature, how can this largely unexploited wealth of descriptive data be rendered amenable to large-scale computation? To identify the bottlenecks, we quantified the time involved in the major aspects of phenotype curation as we annotated characters from the vertebrate phylogenetic systematics literature. This involves attaching fully computable logical expressions consisting of ontology terms to the descriptions in character-by-taxon matrices. The workflow consists of: (i) data preparation, (ii) phenotype annotation, (iii) ontology development and (iv) curation team discussions and software development feedback. Our results showed that the completion of this work required two person-years by a team of two post-docs, a lead data curator, and students. Manual data preparation required close to 13% of the effort. This part in particular could be reduced substantially with better community data practices, such as depositing fully populated matrices in public repositories. Phenotype annotation required ∼40% of the effort. We are working to make this more efficient with Natural Language Processing tools. Ontology development (40%), however, remains a highly manual task requiring domain (anatomical) expertise and use of specialized software. The large overhead required for data preparation and ontology development contributed to a low annotation rate of approximately two characters per hour, compared with 14 characters per hour when activity was restricted to character annotation. Unlocking the potential of the vast stores of morphological descriptions requires better tools for efficiently processing natural language, and better community practices towards a born-digital morphology. Database URL: http://kb.phenoscape.orgItem Open Access Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals.(PLoS One, 2016) Druzinsky, Robert E; Balhoff, James P; Crompton, Alfred W; Done, James; German, Rebecca Z; Haendel, Melissa A; Herrel, Anthony; Herring, Susan W; Lapp, Hilmar; Mabee, Paula M; Muller, Hans-Michael; Mungall, Christopher J; Sternberg, Paul W; Van Auken, Kimberly; Vinyard, Christopher J; Williams, Susan H; Wall, Christine EBACKGROUND: In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required. DEVELOPMENT AND TESTING OF THE ONTOLOGY: Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. RESULTS AND SIGNIFICANCE: Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.Item Open Access NeXML: rich, extensible, and verifiable representation of comparative data and metadata.(Systematic biology, 2012-07) Vos, Rutger A; Balhoff, James P; Caravas, Jason A; Holder, Mark T; Lapp, Hilmar; Maddison, Wayne P; Midford, Peter E; Priyam, Anurag; Sukumaran, Jeet; Xia, Xuhua; Stoltzfus, ArlinIn scientific research, integration and synthesis require a common understanding of where data come from, how much they can be trusted, and what they may be used for. To make such an understanding computer-accessible requires standards for exchanging richly annotated data. The challenges of conveying reusable data are particularly acute in regard to evolutionary comparative analysis, which comprises an ever-expanding list of data types, methods, research aims, and subdisciplines. To facilitate interoperability in evolutionary comparative analysis, we present NeXML, an XML standard (inspired by the current standard, NEXUS) that supports exchange of richly annotated comparative data. NeXML defines syntax for operational taxonomic units, character-state matrices, and phylogenetic trees and networks. Documents can be validated unambiguously. Importantly, any data element can be annotated, to an arbitrary degree of richness, using a system that is both flexible and rigorous. We describe how the use of NeXML by the TreeBASE and Phenoscape projects satisfies user needs that cannot be satisfied with other available file formats. By relying on XML Schema Definition, the design of NeXML facilitates the development and deployment of software for processing, transforming, and querying documents. The adoption of NeXML for practical use is facilitated by the availability of (1) an online manual with code samples and a reference to all defined elements and attributes, (2) programming toolkits in most of the languages used commonly in evolutionary informatics, and (3) input-output support in several widely used software applications. An active, open, community-based development process enables future revision and expansion of NeXML.Item Open Access On the Ontological Modeling of Trees(2017-10-24) Carral, David; Hitzler, Pascal; Lapp, Hilmar; Rudolph, SebastianTrees -- i.e., the type of data structure known under this name -- are central to many aspects of knowledge organization. We investigate some central design choices concerning the ontological modeling of such trees. In particular, we consider the limits of what is expressible in the Web Ontology Language, and provide a reusable ontology design pattern for trees.Item Open Access Overview of FEED, the feeding experiments end-user database.(Integr Comp Biol, 2011-08) Wall, Christine E; Vinyard, Christopher J; Williams, Susan H; Gapeyev, Vladimir; Liu, Xianhua; Lapp, Hilmar; German, Rebecca ZThe Feeding Experiments End-user Database (FEED) is a research tool developed by the Mammalian Feeding Working Group at the National Evolutionary Synthesis Center that permits synthetic, evolutionary analyses of the physiology of mammalian feeding. The tasks of the Working Group are to compile physiologic data sets into a uniform digital format stored at a central source, develop a standardized terminology for describing and organizing the data, and carry out a set of novel analyses using FEED. FEED contains raw physiologic data linked to extensive metadata. It serves as an archive for a large number of existing data sets and a repository for future data sets. The metadata are stored as text and images that describe experimental protocols, research subjects, and anatomical information. The metadata incorporate controlled vocabularies to allow consistent use of the terms used to describe and organize the physiologic data. The planned analyses address long-standing questions concerning the phylogenetic distribution of phenotypes involving muscle anatomy and feeding physiology among mammals, the presence and nature of motor pattern conservation in the mammalian feeding muscles, and the extent to which suckling constrains the evolution of feeding behavior in adult mammals. We expect FEED to be a growing digital archive that will facilitate new research into understanding the evolution of feeding anatomy.Item Open Access Phenex: ontological annotation of phenotypic diversity.(PLoS One, 2010-05-05) Balhoff, James P; Dahdul, Wasila M; Kothari, Cartik R; Lapp, Hilmar; Lundberg, John G; Mabee, Paula; Midford, Peter E; Westerfield, Monte; Vision, Todd JBACKGROUND: Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. CONCLUSIONS/SIGNIFICANCE: Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.