Browsing by Author "Lee, ME"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon(Environmental Research Letters, 2017-01-01) Austin, KG; Lee, ME; Clark, C; Forester, BR; Urban, DL; White, L; Kasibhatla, PS; Poulsen, JR© 2017 IOP Publishing Ltd. Industrial-scale oil palm cultivation is rapidly expanding in Gabon, where it has the potential to drive economic growth, but also threatens forest, biodiversity and carbon resources. The Gabonese government is promoting an ambitious agricultural expansion strategy, while simultaneously committing to minimize negative environmental impacts of oil palm agriculture. This study estimates the extent and location of suitable land for oil palm cultivation in Gabon, based on an analysis of recent trends in plantation permitting. We use the resulting suitability map to evaluate two proposed approaches to minimizing negative environmental impacts: a High Carbon Stock (HCS) approach, which emphasizes forest protection and climate change mitigation, and a High Conservation Value (HCV) approach, which focuses on safeguarding biodiversity and ecosystems. We quantify the forest area, carbon stock, and biodiversity resources protected under each approach, using newly developed maps of priority species distributions and forest biomass for Gabon. We find 2.7-3.9 Mha of suitable or moderately suitable land that avoid HCS areas, 4.4 million hectares (Mha) that avoid HCV areas, and 1.2-1.7 Mha that avoid both. This suggests that Gabon's oil palm production target could likely be met without compromising important ecosystem services, if appropriate safeguards are put in place. Our analysis improves understanding of suitability for oil palm in Gabon, determines how conservation strategies align with national targets for oil palm production, and informs national land use planning.Item Open Access Old growth Afrotropical forests critical for maintaining forest carbon(Global Ecology and Biogeography, 2020-10-01) Poulsen, JR; Medjibe, VP; White, LJT; Miao, Z; Banak-Ngok, L; Beirne, C; Clark, CJ; Cuni-Sanchez, A; Disney, M; Doucet, JL; Lee, ME; Lewis, SL; Mitchard, E; Nuñez, CL; Reitsma, J; Saatchi, S; Scott, CTAim: Large trees [≥ 70 cm diameter at breast height (DBH)] contribute disproportionately to aboveground carbon stock (AGC) across the tropics but may be vulnerable to changing climate and human activities. Here we determine the distribution, drivers and threats to large trees and high carbon forest. Location: Central Africa. Time period: Current. Major taxa studied: Trees. Methods: Using Gabon's new National Resource Inventory of 104 field sites, AGC was calculated from 67,466 trees from 578 species and 97 genera. Power and Michaelis–Menten models assessed the contribution of large trees to AGC. Environmental and anthropogenic drivers of AGC, large trees, and stand variables were modelled using Akaike’s information criterion (AIC) weights to calculate average regression coefficients for all p. ossible models. Results: Mean AGC for trees ≥ 10 cm DBH in Gabonese forestlands was 141.7 Mg C/ha, with averages of 166.6, 171.3 and 96.6 Mg C/ha in old growth, concession and secondary forest. High carbon forests occurred where large trees are most abundant: 31% of AGC was stored in large trees (2.3% of all stems). Human activities largely drove variation in AGC and large trees, but climate and edaphic conditions also determined stand variables (basal area, tree height, wood density, stem density). AGC and large trees increased with distance from human settlements; AGC was 40% lower in secondary than primary and concession forests and 33% higher in protected than non-managed areas. Main conclusions: AGC and large trees were negatively associated with human activities, highlighting the importance of forest management. Redefining large trees as ≥ 50 cm DBH (4.3% more stems) would account for 20% more AGC. This study demonstrates that protecting relatively undisturbed forests can be disproportionately effective in conserving carbon and suggests that including sustainable forestry in programs like reduced emissions for deforestation and forest degradation could maintain carbon dense forests in logging concessions that are a large proportion of remaining Central African forests.Item Open Access Reducing Carbon Emissions from Forest Conversion for Oil Palm Agriculture in Gabon(Conservation Letters, 2017-05-01) Burton, MEH; Poulsen, JR; Lee, ME; Medjibe, VP; Stewart, CG; Venkataraman, A; White, LJTCopyright and Photocopying: © 2016 The Authors. Conservation Letters published by Wiley Periodicals, Inc. Growing demand for palm oil is driving its expansion into the African tropics, potentially leading to significant carbon emissions if tropical forest is converted to palm monoculture. In this first study of a Central African oil palm concession (31,800 ha), we predict that the conversion of 11,500 ha of logged forest to a palm plantation in Gabon will release 1.50 Tg C (95% CI = [1.29, 1.76]). These emissions could be completely offset over 25 years th rough sequestration in planned forest set-asides given a 2.6:1 ratio of logged to converted forest. Using an agricultural suitability model, we find that careful national land-use planning could largely avoid high carbon emissions while meeting goals for palm oil production. We recommend that Gabon adopts a national carbon threshold for land conversion and requires concession-level set-aside ratios that meet no-net emissions criteria as mechanisms for steering plantations away from high carbon forests.