Browsing by Author "Lee, Narae"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Regulation of Integrin α6 Recycling by Calcium-independent Phospholipase A2 (iPLA2) to Promote Microglia Chemotaxis on Laminin.(The Journal of biological chemistry, 2016-11) Lee, Sang-Hyun; Sud, Neetu; Lee, Narae; Subramaniyam, Selvaraj; Chung, Chang YMicroglia are the immune effector cells that are activated in response to pathological changes in the central nervous system. Microglial activation is accompanied by the alteration of integrin expression on the microglia surface. However, changes of integrin expression upon chemoattractant (ADP) stimulation still remain unknown. In this study, we investigated whether ADP induces the alteration of integrin species on the cell surface, leading to changes in chemotactic ability on different extracellular matrix proteins. Flow cytometry scans and on-cell Western assays showed that ADP stimulation induced a significant increase of α6 integrin-GFP, but not α5, on the surface of microglia cells. Microglia also showed a greater motility increase on laminin than fibronectin after ADP stimulation. Time lapse microscopy and integrin endocytosis assay revealed the essential role of calcium-independent phospholipase A2 activity for the recycling of α6 integrin-GFP from the endosomal recycling complex to the plasma membrane. Lack of calcium-independent phospholipase A2 activity caused a reduced rate of focal adhesion formation on laminin at the leading edge. Our results suggest that the alteration of integrin-mediated adhesion may regulate the extent of microglial infiltration into the site of damage by controlling their chemotactic ability.Item Open Access β-arrestin 2-dependent activation of ERK1/2 is required for ADP-induced paxillin phosphorylation at Ser(83) and microglia chemotaxis.(Glia, 2012-09) Lee, Sang-Hyun; Hollingsworth, Ryan; Kwon, Hyeok-Yil; Lee, Narae; Chung, Chang YMicroglia play crucial roles in increased inflammation in the central nervous system upon brain injuries and diseases. Extracellular ADP has been reported to induce microglia chemotaxis and membrane ruffle formation through P2Y(12) receptor. In this study, we examined the role of ERK1/2 activation in ADP-induced microglia chemotaxis. ADP stimulation increases the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and paxillin phosphorylation at Tyr(31) and Ser(83) . Inhibition of ERK1/2 significantly inhibited paxillin phosphorylation at Ser(83) and the retraction of membrane ruffles, causing inefficient chemotaxis. Close examination of dynamics of focal adhesion (FA) formation with green fluorescent protein-paxillin revealed that the disassembly of FAs in U0126-treated cells was significantly impaired. Depletion of β-Arrestin 2 (β-Arr2) with short hairpin RNA markedly reduced the phosphorylation of ERK1/2 and Pax/Ser(83) , indicating that β-Arr2 is required for ERK1/2 activation upon ADP stimulation. A large fraction of phosphorylated ERK1/2 and β-Arr2 were translocated and co-localized at focal contacts in the newly forming lamellipodia. Examination of kinetics and rate constant of paxillin formation and disassembly revealed that the phosphorylation of paxillin at Tyr(31) by c-Src appears to be involved in adhesion formation upon ADP stimulation while Ser(83) required for adhesion disassembly.