Browsing by Author "Li, Chijun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access In Vivo and in Vitro Synthesis of Phosphatidylglycerol by an Escherichia coli Cardiolipin Synthase.(J Biol Chem, 2016-11-25) Li, Chijun; Tan, Brandon K; Zhao, Jinshi; Guan, ZiqiangPhosphatidylglycerol (PG) makes up 5-20% of the phospholipids of Escherichia coli and is essential for growth in wild-type cells. PG is synthesized from the dephosphorylation of its immediate precursor, phosphatidylglycerol phosphate (PGP) whose synthase in E. coli is PgsA. Using genetic, biochemical, and highly sensitive mass spectrometric approaches, we identified an alternative mechanism for PG synthesis in E. coli that is PgsA independent. The reaction of synthesis involves the conversion of phosphatidylethanolamine and glycerol into PG and is catalyzed by ClsB, a phospholipase D-type cardiolipin synthase. This enzymatic reaction is demonstrated herein both in vivo and in vitro as well as by using the purified ClsB protein. When the growth medium was supplemented with glycerol, the expression of E. coli ClsB significantly increased PG and cardiolipin levels, with the growth deficiency of pgsA null strain also being complemented under such conditions. Identification of this alternative mechanism for PG synthesis not only expands our knowledge of bacterial anionic phospholipid biosynthesis, but also sheds light on the biochemical functions of the cls gene redundancy in E. coli and other bacteria. Finally, the PGP-independent PG synthesis in E. coli may also have important implications for the understanding of PG biosynthesis in eukaryotes that remains incomplete.Item Open Access Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis.(Nat Commun, 2016-01-05) Ardiccioni, Chiara; Clarke, Oliver B; Tomasek, David; Issa, Habon A; von Alpen, Desiree C; Pond, Heather L; Banerjee, Surajit; Rajashankar, Kanagalaghatta R; Liu, Qun; Guan, Ziqiang; Li, Chijun; Kloss, Brian; Bruni, Renato; Kloppmann, Edda; Rost, Burkhard; Manzini, M Chiara; Shapiro, Lawrence; Mancia, FilippoThe attachment of a sugar to a hydrophobic polyisoprenyl carrier is the first step for all extracellular glycosylation processes. The enzymes that perform these reactions, polyisoprenyl-glycosyltransferases (PI-GTs) include dolichol phosphate mannose synthase (DPMS), which generates the mannose donor for glycosylation in the endoplasmic reticulum. Here we report the 3.0 Å resolution crystal structure of GtrB, a glucose-specific PI-GT from Synechocystis, showing a tetramer in which each protomer contributes two helices to a membrane-spanning bundle. The active site is 15 Å from the membrane, raising the question of how water-soluble and membrane-embedded substrates are brought into apposition for catalysis. A conserved juxtamembrane domain harbours disease mutations, which compromised activity in GtrB in vitro and in human DPM1 tested in zebrafish. We hypothesize a role of this domain in shielding the polyisoprenyl-phosphate for transport to the active site. Our results reveal the basis of PI-GT function, and provide a potential molecular explanation for DPM1-related disease.