Browsing by Author "Li, Hengming"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Interference of chiral Andreev edge states(Nature Physics, 2020-08-01) Zhao, Lingfei; Arnault, Ethan G; Bondarev, Alexey; Seredinski, Andrew; Larson, Trevyn; Draelos, Anne W; Li, Hengming; Watanabe, Kenji; Taniguchi, Takashi; Amet, François; Baranger, Harold U; Finkelstein, Gleb© 2020, The Author(s), under exclusive licence to Springer Nature Limited. The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an outgoing electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation.Item Open Access Quantum Hall-based superconducting interference device.(Science Advances, 2019-09-13) Seredinski, Andrew; Draelos, Anne W; Arnault, Ethan G; Wei, Ming-Tso; Li, Hengming; Fleming, Tate; Watanabe, Kenji; Taniguchi, Takashi; Amet, François; Finkelstein, GlebWe present a study of a graphene-based Josephson junction with dedicated side gates carved from the same sheet of graphene as the junction itself. These side gates are highly efficient and allow us to modulate carrier density along either edge of the junction in a wide range. In particular, in magnetic fields in the 1- to 2-T range, we are able to populate the next Landau level, resulting in Hall plateaus with conductance that differs from the bulk filling factor. When counter-propagating quantum Hall edge states are introduced along either edge, we observe a supercurrent localized along that edge of the junction. Here, we study these supercurrents as a function of magnetic field and carrier density.Item Open Access Supercurrent Flow in Multiterminal Graphene Josephson Junctions.(Nano letters, 2019-02) Draelos, Anne W; Wei, Ming-Tso; Seredinski, Andrew; Li, Hengming; Mehta, Yash; Watanabe, Kenji; Taniguchi, Takashi; Borzenets, Ivan V; Amet, François; Finkelstein, GlebWe investigate the electronic properties of ballistic planar Josephson junctions with multiple superconducting terminals. Our devices consist of monolayer graphene encapsulated in boron nitride with molybdenum-rhenium contacts. Resistance measurements yield multiple resonant features, which are attributed to supercurrent flow among adjacent and nonadjacent Josephson junctions. In particular, we find that superconducting and dissipative currents coexist within the same region of graphene. We show that the presence of dissipative currents primarily results in electron heating and estimate the associated temperature rise. We find that the electrons in encapsulated graphene are efficiently cooled through the electron-phonon coupling.