Browsing by Author "Li, Lei"
- Results Per Page
- Sort Options
Item Open Access A Search for a New Particle Decaying to Pairs of Weak Gauge Bosons with the ATLAS Detector(2016) Li, LeiA search for new heavy resonances decaying to boson pairs (WZ, WW or ZZ) using 20.3 inverse femtobarns of proton-proton collision data at a center of mass energy of 8 TeV is presented. The data were recorded by the ATLAS detector at the Large Hadron Collider (LHC) in 2012. The analysis combines several search channels with the leptonic, semi-leptonic and fully hadronic final states. The diboson invariant mass spectrum is studied for local excesses above the Standard Model background prediction, and no significant excess is observed for the combined analysis. 95$\%$ confidence limits are set on the cross section times branching ratios for three signal models: an extended gauge model with a heavy W boson, a bulk Randall-Sundrum model with a spin-2 graviton, and a simplified model with a heavy vector triplet. Among the individual search channels, the fully-hadronic channel is predominantly presented where boson tagging technique and jet substructure cuts are used. Local excesses are found in the dijet mass distribution around 2 TeV, leading to a global significance of 2.5 standard deviations. This deviation from the Standard Model prediction results in many theory explanations, and the possibilities could be further explored using the LHC Run 2 data.
Item Open Access Differential controls of MAIT cell effector polarization by mTORC1/mTORC2 via integrating cytokine and costimulatory signals(Nature Communications, 2021-12) Tao, Huishan; Pan, Yun; Chu, Shuai; Li, Lei; Xie, Jinhai; Wang, Peng; Zhang, Shimeng; Reddy, Srija; Sleasman, John W; Zhong, Xiao-PingAbstractMucosal-associated invariant T (MAIT) cells have important functions in immune responses against pathogens and in diseases, but mechanisms controlling MAIT cell development and effector lineage differentiation remain unclear. Here, we report that IL-2/IL-15 receptor β chain and inducible costimulatory (ICOS) not only serve as lineage-specific markers for IFN-γ-producing MAIT1 and IL-17A-producing MAIT17 cells, but are also important for their differentiation, respectively. Both IL-2 and IL-15 induce mTOR activation, T-bet upregulation, and subsequent MAIT cell, especially MAIT1 cell, expansion. By contrast, IL-1β induces more MAIT17 than MAIT1 cells, while IL-23 alone promotes MAIT17 cell proliferation and survival, but synergizes with IL-1β to induce strong MAIT17 cell expansion in an mTOR-dependent manner. Moreover, mTOR is dispensable for early MAIT cell development, yet pivotal for MAIT cell effector differentiation. Our results thus show that mTORC2 integrates signals from ICOS and IL-1βR/IL-23R to exert a crucial role for MAIT17 differentiation, while the IL-2/IL-15R-mTORC1-T-bet axis ensures MAIT1 differentiation.Item Open Access High-speed label-free functional photoacoustic microscopy of mouse brain in action.(Nat Methods, 2015-05) Yao, Junjie; Wang, Lidai; Yang, Joon-Mo; Maslov, Konstantin I; Wong, Terence TW; Li, Lei; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong VWe present fast functional photoacoustic microscopy (PAM) for three-dimensional high-resolution, high-speed imaging of the mouse brain, complementary to other imaging modalities. We implemented a single-wavelength pulse-width-based method with a one-dimensional imaging rate of 100 kHz to image blood oxygenation with capillary-level resolution. We applied PAM to image the vascular morphology, blood oxygenation, blood flow and oxygen metabolism in both resting and stimulated states in the mouse brain.Item Open Access Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe.(Nat Methods, 2016-01) Yao, Junjie; Kaberniuk, Andrii A; Li, Lei; Shcherbakova, Daria M; Zhang, Ruiying; Wang, Lidai; Li, Guo; Verkhusha, Vladislav V; Wang, Lihong VPhotoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ∼ 100-μm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ∼ 140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales.Item Open Access RB1-deficient prostate tumor growth and metastasis are vulnerable to ferroptosis induction via the E2F/ACSL4 axis.(The Journal of clinical investigation, 2023-03) Wang, Mu-En; Chen, Jiaqi; Lu, Yi; Bawcom, Alyssa R; Wu, Jinjin; Ou, Jianhong; Asara, John M; Armstrong, Andrew J; Wang, Qianben; Li, Lei; Wang, Yuzhuo; Huang, Jiaoti; Chen, MingInactivation of the RB1 tumor suppressor gene is common in several types of therapy-resistant cancers, including metastatic castration-resistant prostate cancer, and predicts poor clinical outcomes. Effective therapeutic strategies against RB1-deficient cancers, however, remain elusive. Here we showed that RB1-loss/E2F activation sensitized cancer cells to ferroptosis, a form of regulated cell death driven by iron-dependent lipid peroxidation, by upregulating expression of ACSL4 and enriching ACSL4-dependent arachidonic acid-containing phospholipids, which are key components of ferroptosis execution. ACSL4 appeared to be a direct E2F target gene and was critical to RB1 loss-induced sensitization to ferroptosis. Importantly, using cell line-derived xenografts and genetically engineered tumor models, we demonstrated that induction of ferroptosis in vivo by JKE-1674, a highly selective and stable GPX4 inhibitor, blocked RB1-deficient prostate tumor growth and metastasis and led to improved survival of the mice. Thus, our findings uncover an RB/E2F/ACSL4 molecular axis that governs ferroptosis, and also suggest a promising approach for the treatment of RB1-deficient malignancies.