Browsing by Author "Li, Taoran"
Results Per Page
Sort Options
Item Open Access An investigation of machine learning methods in delta-radiomics feature analysis.(PloS one, 2019-01) Chang, Yushi; Lafata, Kyle; Sun, Wenzheng; Wang, Chunhao; Chang, Zheng; Kirkpatrick, John P; Yin, Fang-FangPURPOSE:This study aimed to investigate the effectiveness of using delta-radiomics to predict overall survival (OS) for patients with recurrent malignant gliomas treated by concurrent stereotactic radiosurgery and bevacizumab, and to investigate the effectiveness of machine learning methods for delta-radiomics feature selection and building classification models. METHODS:The pre-treatment, one-week post-treatment, and two-month post-treatment T1 and T2 fluid-attenuated inversion recovery (FLAIR) MRI were acquired. 61 radiomic features (intensity histogram-based, morphological, and texture features) were extracted from the gross tumor volume in each image. Delta-radiomics were calculated between the pre-treatment and post-treatment features. Univariate Cox regression and 3 multivariate machine learning methods (L1-regularized logistic regression [L1-LR], random forest [RF] or neural networks [NN]) were used to select a reduced number of features, and 7 machine learning methods (L1-LR, L2-LR, RF, NN, kernel support vector machine [KSVM], linear support vector machine [LSVM], or naïve bayes [NB]) was used to build classification models for predicting OS. The performances of the total 21 model combinations built based on single-time-point radiomics (pre-treatment, one-week post-treatment, and two-month post-treatment) and delta-radiomics were evaluated by the area under the receiver operating characteristic curve (AUC). RESULTS:For a small cohort of 12 patients, delta-radiomics resulted in significantly higher AUC than pre-treatment radiomics (p-value<0.01). One-week/two-month delta-features resulted in significantly higher AUC (p-value<0.01) than the one-week/two-month post-treatment features, respectively. 18/21 model combinations were with higher AUC from one-week delta-features than two-month delta-features. With one-week delta-features, RF feature selector + KSVM classifier and RF feature selector + NN classifier showed the highest AUC of 0.889. CONCLUSIONS:The results indicated that delta-features could potentially provide better treatment assessment than single-time-point features. The treatment assessment is substantially affected by the time point for computing the delta-features and the combination of machine learning methods for feature selection and classification.Item Open Access Automatic Planning of Whole Breast Radiation Therapy Using Machine Learning Models.(Frontiers in Oncology, 2019-01) Sheng, Yang; Li, Taoran; Yoo, Sua; Yin, Fang-Fang; Blitzblau, Rachel; Horton, Janet K; Ge, Yaorong; Wu, Q JackiePurpose: To develop an automatic treatment planning system for whole breast radiation therapy (WBRT) based on two intensity-modulated tangential fields, enabling near-real-time planning. Methods and Materials: A total of 40 WBRT plans from a single institution were included in this study under IRB approval. Twenty WBRT plans, 10 with single energy (SE, 6MV) and 10 with mixed energy (ME, 6/15MV), were randomly selected as training dataset to develop the methodology for automatic planning. The rest 10 SE cases and 10 ME cases served as validation. The auto-planning process consists of three steps. First, an energy prediction model was developed to automate energy selection. This model establishes an anatomy-energy relationship based on principle component analysis (PCA) of the gray level histograms from training cases' digitally reconstructed radiographs (DRRs). Second, a random forest (RF) model generates an initial fluence map using the selected energies. Third, the balance of overall dose contribution throughout the breast tissue is realized by automatically selecting anchor points and applying centrality correction. The proposed method was tested on the validation dataset. Non-parametric equivalence test was performed for plan quality metrics using one-sided Wilcoxon Signed-Rank test. Results: For validation, the auto-planning system suggested same energy choices as clinical-plans in 19 out of 20 cases. The mean (standard deviation, SD) of percent target volume covered by 100% prescription dose was 82.5% (4.2%) for auto-plans, and 79.3% (4.8%) for clinical-plans (p > 0.999). Mean (SD) volume receiving 105% Rx were 95.2 cc (90.7 cc) for auto-plans and 83.9 cc (87.2 cc) for clinical-plans (p = 0.108). Optimization time for auto-plan was <20 s while clinical manual planning takes between 30 min and 4 h. Conclusions: We developed an automatic treatment planning system that generates WBRT plans with optimal energy selection, clinically comparable plan quality, and significant reduction in planning time, allowing for near-real-time planning.Item Open Access Diode-based transmission detector for IMRT delivery monitoring: a validation study.(Journal of applied clinical medical physics, 2016-09-08) Li, Taoran; Wu, Q Jackie; Matzen, Thomas; Yin, Fang-Fang; O'Daniel, Jennifer CThe purpose of this work was to evaluate the potential of a new transmission detector for real-time quality assurance of dynamic-MLC-based radiotherapy. The accuracy of detecting dose variation and static/dynamic MLC position deviations was measured, as well as the impact of the device on the radiation field (surface dose, transmission). Measured dose variations agreed with the known variations within 0.3%. The measurement of static and dynamic MLC position deviations matched the known deviations with high accuracy (0.7-1.2 mm). The absorption of the device was minimal (~ 1%). The increased surface dose was small (1%-9%) but, when added to existing collimator scatter effects could become significant at large field sizes (≥ 30 × 30 cm2). Overall the accuracy and speed of the device show good potential for real-time quality assurance.Item Open Access On-line adaptive radiation therapy: feasibility and clinical study.(Journal of oncology, 2010-01) Li, Taoran; Zhu, Xiaofeng; Thongphiew, Danthai; Lee, W Robert; Vujaskovic, Zeljko; Wu, Qiuwen; Yin, Fang-Fang; Wu, Q JackieThe purpose of this paper is to evaluate the feasibility and clinical dosimetric benefit of an on-line, that is, with the patient in the treatment position, Adaptive Radiation Therapy (ART) system for prostate cancer treatment based on daily cone-beam CT imaging and fast volumetric reoptimization of treatment plans. A fast intensity-modulated radiotherapy (IMRT) plan reoptimization algorithm is implemented and evaluated with clinical cases. The quality of these adapted plans is compared to the corresponding new plans generated by an experienced planner using a commercial treatment planning system and also evaluated by an in-house developed tool estimating achievable dose-volume histograms (DVHs) based on a database of existing treatment plans. In addition, a clinical implementation scheme for ART is designed and evaluated using clinical cases for its dosimetric qualities and efficiency.Item Open Access Quantitative comparison of automatic and manual IMRT optimization for prostate cancer: the benefits of DVH prediction.(Journal of applied clinical medical physics, 2015-03-08) Yang, Yun; Li, Taoran; Yuan, Lunlin; Ge, Yaorong; Yin, Fang-Fang; Lee, W Robert; Wu, Q JackieA recent publication indicated that the patient anatomical feature (PAF) model was capable of predicting optimal objectives based on past experience. In this study, the benefits of IMRT optimization using PAF-predicted objectives as guidance for prostate were evaluated. Three different optimization methods were compared.1) Expert Plan: Ten prostate cases (16 plans) were planned by an expert planner using conventional trial-and-error approach started with institutional modified OAR and PTV constraints. Optimization was stopped at 150 iterations and that plan was saved as Expert Plan. 2) Clinical Plan: The planner would keep working on the Expert Plan till he was satisfied with the dosimetric quality and the final plan was referred to as Clinical Plan. 3) PAF Plan: A third sets of plans for the same ten patients were generated fully automatically using predicted DVHs as guidance. The optimization was based on PAF-based predicted objectives, and was continued to 150 iterations without human interaction. DMAX and D98% for PTV, DMAX for femoral heads, DMAX, D10cc, D25%/D17%, and D40% for bladder/rectum were compared. Clinical Plans are further optimized with more iterations and adjustments, but in general provided limited dosimetric benefits over Expert Plans. PTV D98% agreed within 2.31% among Expert, Clinical, and PAF plans. Between Clinical and PAF Plans, differences for DMAX of PTV, bladder, and rectum were within 2.65%, 2.46%, and 2.20%, respectively. Bladder D10cc was higher for PAF but < 1.54% in general. Bladder D25% and D40% were lower for PAF, by up to 7.71% and 6.81%, respectively. Rectum D10cc, D17%, and D40% were 2.11%, 2.72%, and 0.27% lower for PAF, respectively. DMAX for femoral heads were comparable (< 35 Gy on average). Compared to Clinical Plan (Primary + Boost), the average optimization time for PAF plan was reduced by 5.2 min on average, with a maximum reduction of 7.1min. Total numbers of MUs per plan for PAF Plans were lower than Clinical Plans, indicating better delivery efficiency. The PAF-guided planning process is capable of generating clinical-quality prostate IMRT plans with no human intervention. Compared to manual optimization, this automatic optimization increases planning and delivery efficiency, while maintainingplan quality.Item Open Access Spine SBRT With Halcyon™: Plan Quality, Modulation Complexity, Delivery Accuracy, and Speed.(Frontiers in Oncology, 2019-01) Petroccia, Heather M; Malajovich, Irina; Barsky, Andrew R; Ghiam, Alireza Fotouhi; Jones, Joshua; Wang, Chunhao; Zou, Wei; Teo, Boon-Keng Kevin; Dong, Lei; Metz, James M; Li, TaoranPurpose: Spine SBRT requires treatment plans with steep dose gradients and tight limits to the cord maximal dose. A new dual-layer staggered 1-cm MLC in Halcyon™ treatment platform has improved leakage, speed, and DLG compared to 120-Millennium (0.5-cm) and High-Definition (0.25-cm) MLCs in the TrueBeam platform. Halcyon™ 2.0 with SX2 MLC modulates fluence with the upper and lower MLCs, while in Halcyon™ 1.0 with SX1 only the lower MLC modulates the fluence and the upper MLC functions as a back-up jaw. We investigated the effects of four MLC designs on plan quality for spine SBRT treatments. Methods: 15 patients previously treated at our institution were re-planned according to the NRG-BR-002 guidelines with a prescription of 3,000 cGy in 3 fractions, 6xFFF, 800 MU/min, and 3-arc VMAT technique. Planning objectives were adjusted manually by an experienced planner to generate optimal plans and kept the same for different MLCs within the same platform. Results: All treatment plans were able to achieve adequate target coverage while meeting NRG-BR002 dosimetric constraints. Planning parameters were evaluated including: conformity index, homogeneity index, gradient measure, and global point dose maximum. Delivery accuracy, modulation complexity, and delivery time were also analyzed for all MLCs. Conclusion: The Halcyon™ dual-layer MLC can generate comparable and clinically equivalent spine SBRT plans to TrueBeam plans with less rapid dose fall-off and lower conformity. MLC width leaf can impact maximum dose to organs at risk and plan quality, but does not cause limitations in achieving acceptable plans for spine SBRT treatments.Item Open Access Towards the Clinical Implementation of Online Adaptive Radiation Therapy for Prostate Cancer(2013) Li, TaoranThe online adaptive radiation therapy for prostate cancer based on re-optimization has been shown to provide better daily target coverage through the treatment course, especially in treatment sessions with large anatomical deformation. However, the clinical implementation of such technique is still limited primarily due to two major challenges: the low efficiency of re-optimization and the lack of online quality assurance technique to verify delivery accuracy. This project aims at developing new techniques and understandings to address these two challenges.
The study was based on retrospective study on patient data following IRB-approved protocol, including both planning Computer Tomography (CT) and daily Cone-Beam Computer Tomography (CBCT) images. The project is divided in to three parts. The first two parts address primarily the efficiency challenge; and the third part of this project aims at validating the deliverability of the online re-optimized plans and developing an online delivery monitoring system.
I. Overall implementation scheme. In this part, an evidence-based scheme, named Adaptive Image-Guided Radiation Therapy (AIGRT), was developed to integrate the re-optimization technique with the current IGRT technique. The AIGRT process first searches for a best plan for the daily target from a plan pool, which consists the original CT plan and all previous re-optimized plans. If successful, the selected plan is used for the daily treatment with translational shifts. Otherwise, the AIGRT invokes re-optimization process of the CT plan for the anatomy-of-the-day, which is added to the plan pool afterwards as a candidate plan for future fractions. The AIGRT scheme is evaluated by comparisons with daily re-optimization and online repositioning techniques based on daily target coverage, Organ-at-Risk (OAR) sparing and implementation efficiency. Simulated treatment courses for 18 patients with re-optimization alone, re-positioning alone and AIGRT shows that AIGRT offers reliable daily target coverage that is highly comparable to re-optimization everyday and significantly improves compared to re-positioning. AIGRT is also seen to provide improved organs-at-risk (OARs) sparing compared to re-positioning. Apart from dosimetric benefits, AIGRT in addition offers an efficient scheme to integrate re-optimization to current re-positioning-based IGRT workflow.
II. Strategies for automatic re-optimization. This part aims at improving the efficiency of re-optimization through automation and strategic selections of optimization parameters. It investigates the strategies for performing fast (~2 min) automatic online re-optimization with a clinical treatment planning system; and explores the performance with different input parameters settings: the DVH objective settings, starting stage and iteration number (in the context of real time planning). Simulated treatments of 10 patients were re-optimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting re-optimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analysed by statistical modelling, and compared both in terms of dosimetry and delivery efficiency. The results show that all fast online re-optimized plans provide consistent coverage and conformity to the daily target. For OAR sparing however, different planning parameters led to different optimization results. The 3 input parameters, i.e. DVH objectives, starting stages and iteration numbers, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the original plan fluence map as the starting stage reduced OAR dose at the mid-dose region, but increased 17% more monitor units. Only < 2cc differences in OAR V50% / V70Gy / V76Gy were observed between 100 and 50 iterations. Based on these results, it is feasible to perform automatic online re-optimization in ~2 min using a clinical treatment planning system. Selecting optimal sets of input parameters is the key to achieving high quality re-optimized plans, and should be based on the individual patient's daily anatomy, delivery efficiency and time allowed for plan adaptation.
III. Delivery accuracy evaluation and monitoring. This part of the project aims at validating the deliverability of the online re-optimized plans and developing an online delivery monitoring system. This system is based on input from Dynamic Machine Information (DMI), which continuously reports actual multi-leaf collimator (MLC) positions and machine monitor units (MUs) at 50ms intervals. Based on these DMI inputs, the QA system performed three levels of monitoring/verification on the plan delivery process: (1) Following each input, actual and expected fluence maps delivered up to the current MLC position were dynamically updated using corresponding MLC positions in the DMI. The difference between actual and expected fluence maps creates a fluence error map (FEM), which is used to assess the delivery accuracy. (2) At each control point, actual MLC positions were verified against the treatment plan for potential errors in data transfer between the treatment planning system (TPS) and the MLC controller. (3) After treatment, delivered dose was reconstructed in the treatment planning system based on DMI data during delivery, and compared to planned dose. FEMs from 210 prostate IMRT beams were evaluated for error magnitude and patterns. In addition, systematic MLC errors of ±0.5 and ±1 mm for both banks were simulated to understand error patterns in resulted FEMs. Applying clinical IMRT QA standard to the online re-optimized plans suggests the deliverability of online re-optimized plans are similar to regular IMRT plans. Applying the proposed QA system to online re-optimized plans also reveals excellent delivery accuracy: over 99% leaf position differences are < 0.5 mm, and the majority of pixels in FEMs are < 0.5 MU with errors exceeding 0.5 MU primarily located on the edge of the fields. All clinical FEMs observed in this study have positive errors on the left edges, and negative errors on the right. Analysis on a typical FEM reveals positive correlation between the magnitude of fluence errors and the corresponding leaf speed. FEMs of simulated erroneous delivery exhibit distinct patterns for different MLC error magnitudes and directions, indicating the proposed QA system is highly specific in detecting the source of errors. Based on these results, it can be concluded that the proposed online delivery monitoring system is very sensitive to leaf position errors, highly specific of the error types, and therefore meets the purpose for online delivery accuracy verification. Post-treatment dosimetric verification shows minimal difference between planned and actual delivered DVH, further confirming that the online re-optimized plans can be accurately delivered.
In summary, this project addressed two most important challenges for clinical implementation of online ART, efficiency and quality assurance, through innovative system design, technique development and validation with clinical data. The efficiencies of the overall treatment scheme and the re-optimization process have been improved significantly; and the proposed online quality assurance system is found to be effective in catching and differentiating leaf motion errors.